Karyology of Ten Vespertilionid Bats (Chiroptera: Vespertilionidae) from Taiwan

Liang-Kong Lin1,*, Masaharu Motokawa2 and Masashi Harada3

1Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C.
2The Kyoto University Museum, Kyoto 606-8501, Japan
3Laboratory Animal Center, Osaka City University Medical School, Osaka 545-8585, Japan

(Accepted June 17, 2002)

Liang-Kong Lin, Masaharu Motokawa and Masashi Harada (2002) Karyology of ten vespertilionid bats (Chiroptera: Vespertilionidae) from Taiwan. Zoological Studies 41(4): 347-354. The karyotypes of 10 Taiwanese vespertilionid bats were examined for the 1st time. Three Myotis species (M. formosus watasei, M. latriostris, and M. taiwanensis) have the standard Myotis karyotype of 2n = 44 with FN = 50. The karyotypes of Plecotus taivanus (2n = 32, FN = 50), Eptesicus serotinus horikawai (2n = 50, FN = 48), Arielulus torquatus (2n = 50, FN = 48), and Murina puta (2n = 44, FN = 50) show conservative patterns when compared to other species of the same respective genus. Scotophilus kuhlii (2n = 36, FN = 48) and Miniopterus schreibersii (2n = 46, FN = 50) have karyotypes essentially identical to those previously reported from other regions. Nyctalus sp. from Taiwan has the same karyotype of 2n = 36 as that of N. velutinus from China and should be separated from N. noctula (2n = 42) based on the different karyotypes.

Key words: Karyotype, Vespertilionidae, Cytotaxonomy.

During a series of intensive bat surveys conducted in Taiwan in recent years (see Lin et al. 1997), one new bat species for Taiwan has been described (Csorba and Lee 1999) and some species were newly recorded for Taiwan (Lin et al. 1997). In addition to traditional taxonomic comparisons by morphological characters, karyotypic studies not only can provide information on phylogenetic relationships but also have great value in solving systematic problems (Yoshiyuki 1989, Yoo and Yoon 1992, Sreepada et al. 1996, Volleth et al. 2001). Until now, karyotypes of only 4 species of bats belonging to the Rhinolophidae and Hipposideridae in Taiwan have been compared with their Japanese counterparts (Ando et al. 1980).

On the other hand, vespertilionid bats (Family: Vespertilionidae) have a wide geographical distribution and constitute most of the species in Taiwan, where there are at least 18 species of vespertilionid bats (Lin unpubl. data). Specimens of 1 species each in the genera Barabastella, Pipistrellus, Murina, Myotis, and Kerivoula need further taxonomic studies in order to clarify their specific status, and 2 species of Harpiocephalus and Vespertilio lack specimens for karyotyping. As for the comparisons with Pipistrellus abramus of Japan, the karyotype of Pipistrellus abramus from Taiwan was presented in another paper (Lin et al. unpubl. data). Herein we analyze the karyotypes of 10 Taiwanese vespertilionid bats.

MATERIALS AND METHODS

Thirty-seven live specimens of 10 species of vespertilionid bats were captured in central and southern Taiwan (Table 1). These specimens...
were identified according to morphological characters following Jones et al. (1971) and Lin et al. (1997). Specimens were deposited in the Department of Biology, Tunghai Univ. and the Laboratory Animal Center, Osaka City Univ. Chromosome preparations were made from primary lung tissue culture cells by the methods of Harada and Yoshida (1978). Nomenclature of chromosomes follows Levan et al. (1964). The diploid number (2n) was determined by observing 30 metaphase cells in each specimen, and the fundamental number (FN) was identified as the total number of autosomal arms.

RESULTS AND DISCUSSION

This is the 1st report on the karyotypes of the 10 vespertilionid bat species in Taiwan (Table 2). Three species of the genus *Myotis* (*M. formosus watasei*, *M. latirostris*, and *M. taiwanensis*) all have the standard of *Myotis* karyotype (2n = 44 and FN = 50) (Fig. 1A-C). The karyotypes of the 3 species are comprised of 3 large and 1 small pairs of meta-

Table 1. Vespertilionid bats specimens examined in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>No of specimens examined</th>
<th>Collection site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotis formosus watasei</td>
<td>1</td>
<td>Nanzenshan, Manchou Township, Pingtung Co.</td>
</tr>
<tr>
<td>M. latirostris</td>
<td>2</td>
<td>Tsuifeng, Jenai Township, Nantou Co.</td>
</tr>
<tr>
<td>M. taiwanensis</td>
<td>1</td>
<td>Dahsueshan, Heping Township, Taichung Co.</td>
</tr>
<tr>
<td>Plecotus taivanus</td>
<td>2</td>
<td>Tsuifeng, Jenai Township, Nantou Co.</td>
</tr>
<tr>
<td>Scotophilus kuhlii</td>
<td>0</td>
<td>Yongfu, Chungliao Township, Nantou Co.</td>
</tr>
<tr>
<td>Plecotus taivanus</td>
<td>0</td>
<td>Dahsueshan, Heping Township, Taichung Co.</td>
</tr>
<tr>
<td>Scotophilus kuhlii</td>
<td>0</td>
<td>Puli Township, Nantou Co.</td>
</tr>
<tr>
<td>Eptesicus serotinus horikawai</td>
<td>1</td>
<td>Taichung City</td>
</tr>
<tr>
<td>Arielulus torquatus</td>
<td>1</td>
<td>Chinchufong, Tsaotun Township, Nantou Co.</td>
</tr>
<tr>
<td>Nyctalus velutinus</td>
<td>0</td>
<td>Puli Township, Nantou Co.</td>
</tr>
<tr>
<td>Miniopterus schreibersii</td>
<td>0</td>
<td>Meishan Township, Chiayi Co.</td>
</tr>
<tr>
<td>Murina puta</td>
<td>1</td>
<td>Wansheng, Hsinyi Township, Nantou Co.</td>
</tr>
</tbody>
</table>

Table 2. Karyotype data on 10 species of Taiwanese vespertilionids

<table>
<thead>
<tr>
<th>Species</th>
<th>2n</th>
<th>FN</th>
<th>Autosome pair</th>
<th>Sex chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotis formosus watasei</td>
<td>44</td>
<td>50</td>
<td>4 0 17</td>
<td>SM A</td>
</tr>
<tr>
<td>M. latirostris</td>
<td>44</td>
<td>50</td>
<td>4 0 17</td>
<td>SM A</td>
</tr>
<tr>
<td>M. taiwanensis</td>
<td>44</td>
<td>50</td>
<td>4 0 17</td>
<td>SM A</td>
</tr>
<tr>
<td>Plecotus taivanus</td>
<td>32</td>
<td>50</td>
<td>10 0 5</td>
<td>SM A</td>
</tr>
<tr>
<td>Scotophilus kuhlii</td>
<td>36</td>
<td>48</td>
<td>7 0 10</td>
<td>SM A</td>
</tr>
<tr>
<td>Eptesicus serotinus horikawai</td>
<td>50</td>
<td>48</td>
<td>0 0 24</td>
<td>SM A</td>
</tr>
<tr>
<td>Arielulus torquatus</td>
<td>50</td>
<td>48</td>
<td>0 0 24</td>
<td>SM A</td>
</tr>
<tr>
<td>Nyctalus velutinus</td>
<td>36</td>
<td>52</td>
<td>7 2 8</td>
<td>M ?</td>
</tr>
<tr>
<td>Miniopterus schreibersii</td>
<td>46</td>
<td>50</td>
<td>3 0 19</td>
<td>SM A</td>
</tr>
<tr>
<td>Murina puta</td>
<td>44</td>
<td>50</td>
<td>4 0 17</td>
<td>M A</td>
</tr>
</tbody>
</table>

M, metacentrics; SM, submetacentrics; ST, subtelocentrics; A, acrocentrics.
centric or submetacentric autosomes, seventeen pairs of acrocentric autosomes ranging from middle-sized to small, a medium-sized submetacentric X chromosome, and a relatively small acrocentric Y chromosome. No differences were found in chromosome morphology among the 3 species. As pointed out by Baker and Patton (1967), Myotis species possess the conservative form of karyotypes and represent the primitive karyotype of vespertilionid bats. It has been assumed that karyotypes of many vespertilionid bats are mainly derived from that of a Myotis-like bat by Robertsonian translocation (centric fusion or fission) (see McBee et al. 1986, Harada 1988). Although the 3 Myotis species in Taiwan have a distinctive external morphology and belong to different subgenera, i.e., M. formosus watasei belongs to the subgenus Chrysopterion, M. latirostris to Selysius, and M. tai-

Fig. 1. Conventional karyotypes of Myotis formosus watasei (A), M. latirostris (B), and M. taiwanensis (C). Bar = 10 μm.
wanensis to Leuconoe (see Corbet and Hill 1992), their karyotypes appear to be identical to one another in gross morphology. This fact suggests that the karyotype is an extremely stable feature in these 3 bats, whereas the external characters are much more plastic. In order to elucidate their phylogenetic relationships, molecular analyses from these 3 species should be performed in the future.

The endemic species, Plecotus taivanus, was discovered in 1991 (Yoshiyuki 1991). The karyotype of this species is 2n = 32 and FN = 50 (Fig. 2A), and is comprised of 9 large and 1 small pairs of metacentrics or submetacentrics and 5 pairs of acrocentrics. The X chromosome is a medium-sized submetacentric, and the Y chromosome is a small acrocentric. Secondary constriction was found in the centromere region of the smallest metacentric pair. Comparing P. taivanus with other Asian Plecotus species, the karyotype of this species is similar to those of P. auritus sacrimonitis of Japan (2n = 32 and FN = 50; Ono and Obara 1994) and P. australicus of Europe (2n = 32 and FN = 50; Fedyk and Fedyk 1970). The karyotype of Plecotus has been regarded as having been derived from a Myotis-like karyotype by centric fusion (Harada 1988). By contrast, the X chromosome of P. (Corynorhinus) mexicanus (2n = 32, FN = 50; Bogdanowicz et al. 1998) from North America is acrocentric, and only 9 pairs of autosomes are metacentric or submetacentric (Lopez-W et al. 1995). These differences in karyotypes indicate that the species of Plecotus in Eurasia and North America probably have distinct lineages. Recently, a morphological and chromosomal study by Bogdanowicz et al. (1998) also confirmed that Plecotus species should be limited to Palaearctic areas, whereas the former subgenus taxon, Corynorhinus, should be given valid generic designation.

The karyotype of Scotophilus kuhlii from Taiwan is 2n = 36 and FN = 48 (Fig. 2B), and has 7 large to small pairs of metacentrics or submetacentrics, and 10 medium to small pairs of acrocentrics. Secondary constriction was found in the smallest acrocentric pair. The X chromosome is a medium-sized submetacentric, and the Y chromosome is a small acrocentric. Two species of Scotophilus (S. kuhlii and S. heathii) are found in Asia (Corbet and Hill 1992). The karyotype of S. temmincki (= kuhlii) from Sabah, Malaysia reported by Harada and Kobayashi (1980) and S. kuhlii from Thailand (Harada et al. 1982a) and India (Sreepads and Gururaj 1994) share the same 2n = 36 and FN = 48 karyotype with the Taiwanese species.

Eptesicus serotinus horikawai from Taiwan has a karyotype with 2n = 50 and FN = 48 (Fig. 2C). All species in the genus Eptesicus, except for the small African E. capensis, have 24 medium to small acrocentric pairs of gradually decreasing size (see McBee et al. 1985, Volleth et al. 2001). A secondary constriction was found in the arm of 1 pair. The X chromosome is a medium-sized submetacentric, and the Y chromosome is a small acrocentric. Only the X chromosome is biarmed. A notable karyotypic variation in the genus Eptesicus is the morphology of the Y chromosome of E. serotinus from Poland, which is submetacentric rather than the typical acrocentric (Fedyk and Fedyk 1970), but this difference was not reported in a more recent study (see Zima and Horacek 1985).

Arielulus torquatus was first described as Pipistrellus sp. based on its external characters and number of premolars (Lin et al. 1997), and later described as a new species from Taiwan by Csorba and Lee (1999). The chromosomal complement of this species is comprised of 24 pairs of acrocentric chromosomes varying in size from medium to small, a medium submetacentric X, and a small acrocentric Y chromosome (Fig. 2D). According to the karyological features of A. torquatus and E. serotinus horikawai in this study, these species share the same formula of 2n = 50 and FN = 48, whereas, a difference in size of the Y chromosome was found. Our results support the views of Csorba and Lee (1999) and Volleth et al. (2001), who consider Arielulus to be closely related to Eptesicus.

A species of Nyctalus in Taiwan was first reported as N. noctula (Jones 1971, Jones and Mumford 1977). No additional specimens had been reported since that capture (Lin et al. 1997), until we caught females of Nyctalus in mountainous areas of central Taiwan in 1999. Because males were not available, the Y chromosome could not be directly determined in this study. The chromosomal number of Nyctalus sp. from Taiwan is 2n = 36. Judging from a karyotypic study of N. velutinus with the same 2n number from Anhui, China (Zhang 1990), the X chromosome was identified as the smallest metacentric pair. Autosomes of Nyctalus sp. from Taiwan are characterized by having 7 large pairs of metacentrics or submetacentrics, three pairs of subtelocentrics of medium to small size, and 7 pairs of medium to small acrocentrics of gradually decreasing size; the FN = 54 (Fig. 3A). A secondary constriction was found
Fig. 2. Conventional karyotypes of *Plecotus taivanus* (A), *Scotophilus kuhlii* (B), *Eptesicus serotinus horikawai* (C), and *Arielulus velutinus* (D). Secondary constrictions are indicated by arrows.
within the arm of the largest acrocentric pair. The X chromosome is a medium-sized metacentric. The Y chromosome is unknown. The karyotype of *Nyctalus* sp. from Taiwan differs from known karyotypes of *Nyctalus* species such as *N. furvus* (2n = 44, FN = 52, Ando et al. 1977; 2n = 44, FN = 50, Harada et al. 1982b), *N. lasiopterus aviator* (2n = 42, FN = 50, Harada 1973; 2n = 42, FN = 50, Ando et al. 1977) from Japan, and *N. noctula* (2n = 42, FN = 50, Zima 1978) from Europe. The major differences among species are the number of chromosomes and the number of large autosomal pairs of metacentrics: three pairs in *N. furvus*, four in *N. lasiopterus aviator* and *N. noctula*, and 7 in the Taiwanese species. Therefore, additional large metacentric pairs in the species of *Nyctalus* from Taiwan may have been caused by the centromeric fusion of 2 acrocentric elements, as previously revealed in *N. lasiopterus aviator* (Harada et al. 1982b). The karyotype reported by Zhang (1990) for *N. velutinus* from China is similar to our results for the *Nyctalus* sp. from Taiwan. Therefore, we suggest that *Nyctalus* bats (2n = 36) from Taiwan should be separated from *N. noctula* (2n = 42).

Fig. 3. Conventional karyotypes of *Nyctalus velutinus* (A), *Miniopterus schreibersii* (B), and *Munroella puta* (C). Secondary constrictions are indicated by arrows.
owing to different karyotypes and be tentatively treated as *N. velutinus*.

The karyotype of *Miniopterus schreibersii* is 2n = 46, FN = 50 (Fig. 3B); it has 2 large and 1 small pairs of metacentrics or submetacentrics and 19 medium-sized to small acrocentric pairs of gradually decreasing size. A secondary constriction was found in a small acrocentric pair. The X chromosome is a medium submetacentric, and the Y chromosome is a small acrocentric. Our findings on the 2n and FN of *M. schreibersii* from Taiwan resemble the karyotypes of conspecifics from Japan (Harada 1973, Ono and Obara 1994), Borneo (Harada and Kobayashi 1980), Korea (Oh 1975), and Europe (Zima and Horacek 1985). However, in Thailand, *M. schreibersii* has a medium-sized subtelo centric pair of chromosomes (Harada et al. 1985, McBee et al. 1986).

Murina puta (2n = 44 and FN = 50, Fig. 3C), endemic to Taiwan, has 3 large and 1 small pairs of metacentrics or submetacentrics, seventeen medium-sized to small pairs of acrocentrics of gradually decreasing size, a medium-sized metacentric X, and a small acrocentric Y chromosome. Similarities in karyotypes among *Murina* species such as *M. aurata ussuriensis* (Harada et al. 1987) and *M. leucogaster hilgendorfi* (Harada 1973, Harada et al. 1987) from Japan, and *M. leuco- gaster* from Thailand (McBee et al. 1986) were found.

McBee et al. (1986) suggested that karyotypic data of the family Vespertilionidae show 3 patterns of chromosomal variability among genera. The 1st pattern includes conservative genera in which all species have the same or nearly the same standard karyotypes, such as *Myotis*, *Eptesicus*, *Plecotus*, *Scotophilus*, *Miniopterus*, and *Murina*. The 2nd pattern includes the genera that exhibit interspecific variability such as *Pipistrellus* and *Nyctalus*. The 3rd pattern includes species that possess certain distinct karyotypes such as the genus *Rhogeessa*. Karyotypic attributes of the chromosome complements observed in our study may be consistent with this view. In this study, although most species show the 1st pattern and banding results are not presented, the taxonomic status of some species (e.g., *Nyctalus* from Taiwan) can be elucidated by the standard karyotypic data reported here.

Acknowledgments: We thank Dr. Gregory Adler for revising an early version of this manuscript, and Drs. Alex H.T. Yu and Maueul Ruedi who provided helpful comments on the manuscript.

REFERENCES

Jones GS. 1971. Two bats new to Taiwan. J. Mammal. 52: 479.

McBee K, JW Bickham, S Yenbutra, J Nabhitabhata, DA...

臺灣十種蝙蝠科蝙蝠之核型

林良恭¹ 本川雅治² 原田正史³

我們首次報告臺灣地區十種屬於蝙蝠科的蝙蝠之核型。三種鼠耳蝠(Myotis)，即渡賴氏鼠耳蝠(M. formosus watasei)、寬吻鼠耳蝠(M. latirostris)與臺灣鼠耳蝠(M. taiwanensis)，都具有典型的鼠耳蝠屬的核型，為2n (雙套)等於44，FN (染色體臂數)為50。臺灣長耳蝠(Plecotus taiwanus)的核型為2n = 32，FN = 50、堀川氏棕蝠(Eptesicus serotinus horikawai)為2n = 50，FN = 48、臺灣黃喉蝠(Arielulus torquatus)為2n = 48及臺灣管鼻蝠(Murina puta)為2n = 44，FN = 50皆呈現出同屬異種間所擁有保守的核型。高頭蝠(Scotophilus kuhlii) (2n = 35，FN = 48)和猬蝠(Minipterus schreibersii) (2n = 46，Fn = 50)的核型則與分布其他地區的相同種類所被分析過的核型一樣。臺灣地區屬於山蝠屬(Nyctalus)的物種其核型為2n = 36，與絨山蝠(N. velutinus)相同而不同於歐洲山蝠(N. noctalus)的核型(2n = 42)，故臺灣本種應屬於絨山蝠(N. velutinus)而非歐洲山蝠(N. noctalus)。

關鍵詞：核型，蝙蝠科，細胞分類學。

¹私立東海大學生物學系
²日本京都大學博物館
³日本大阪市立大學醫學部動物實驗中心