Prostate cancer is the most-common cancer in adult men and is the 2nd-leading cause of cancer deaths in Western countries. Cancer of the prostate is multifocal, and the cancerous tissue is commonly observed to contain multiple independent lesions, suggesting heterogeneity of the disease (Foster et al. 2000). Although steroid androgens and peptide growth factors have been implicated in this disease, determinants of the pathologic growth of prostate cancer are still unclear. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are both potent lysophospholipid growth factors with diverse biological activities and have been suggested as being important in regulating the proliferation and metastasis of cancer cells. LPA activates the ERK pathway and induces proliferation of the human prostate cancer cell line, PC-3. However, the effect of S1P on prostate cancer is still poorly understood. In this study, we found that S1P inhibited cell proliferation through an apoptosis-independent and necrosis-dependent mechanism and caused cell cycle arrest in the G_1 phase of PC-3 cells. S1P also induced significant rounding of cells and actin reorganization. These effects are likely mediated through activation of the S1P_5 receptor. In conclusion, we propose that S1P might change cell-ECM interactions through cytoskeletal rearrangement, thereby influencing the proliferation of prostate cancer cells.

http://www.sinica.edu.tw/zool/zoolstud/44.2/219.pdf

Key words: S1P, Prostate cancer, Cell death, Cell cycle arrest, Cytoskeleton rearrangement.
PKC and many other signaling pathways

Seewald et al. 1999). On the other hand, S1P
might mediate VEGF-induced activation of Ras,
thus consequently activating ERK/MAPK signaling
and cell growth (Spiegel and Milstien 2003b). In
addition, S1P also stimulates angiogenesis in vivo
(Seewald et al. 1999) and activates α2β1 integrin (Lee
2004).

LPA has been shown to act as an autocrine
factor for prostate cancer cells (Xie et al. 2002b).
It has been reported that LPA induces prostate
cancer cell proliferation through activation of the
ERK pathway (Qi et al. 1998, Kue et al. 2002).
However, the effects of S1P on prostate cancer
are largely unknown. In the present study, we
show that S1P inhibits proliferation of the prostate
cancer cell line, PC-3. In addition, S1P also caus-
es cell rounding and actin cytoskeleton rearrange-
ment. Our results suggest a novel role for S1P as
a growth inhibitory mediator for prostate cancer
cells.

MATERIALS AND METHODS

Reagents

Sphingosine 1-phosphate (S1P), oleoyl-
lysophosphatidic acid (LPA), bovine serum albu-
min (BSA), 4′,6-diamino-2-phenylindole (DAPI),
propidium iodide (PI), and RNase A were pur-
chased from Sigma (St. Louis, MO). Fetal bovine
serum and RPMI-1640 were obtained from
Hyclone Laboratories (Logan, UT). Trypan blue
stain (0.4%), TRizol, penicillin-streptomycin, and
trypsin-EDTA were purchased from Invitrogen
(Grand I., NY). Rhodamine-labeled phalloidin was
obtained from Molecular Probes (Eugene, OR).
Triton X-100 was purchased from Amresco (Solon,
OH).

Cell culture

The prostate cancer cell line, PC-3, was kind-
ly provided by Dr. Jih-Hua Guh’s laboratory
(Department of Pharmacology, National Taiwan
University Hospital, Taipei, Taiwan). Cells were
cultured in RPMI1640 with 10% FBS, penicillin
(100 IU/ml), streptomycin (100 IU/ml), and gluta-
mine (5 mM) in a humidified incubator with 5%
CO2 at 37°C. Trypsin-EDTA (0.05%) was used to
detach cells for the experiments.

RNA extraction and reverse-transcriptase
polymerase chain reaction (RT-PCR)

Cells were cultured to around 80% conflu-
ence, and then were serum-starved overnight in
serum-free medium. Total RNA was isolated using
the TRizol reagent (Invitrogen) following the manu-
facturer’s instructions. One microgram of total
RNA was reverse-transcribed using a reverse-trans-
scriptase enzyme (NEB, Beverly, MA). Polymer-
erase chain reactions (PCRs) for Edg receptors
were performed by 35 programmed cycles of 94°C
for 30 s (denaturation), different annealing temper-
atures of each respective primer set for 30 s, and
72°C for 45 s (polymerization). Sequences of the
oligonucleotide primers used and the expected
sizes for the PCR products are shown in table 1.
PCR products were resolved on 1% agarose gels,
stained with ethidium bromide, and photographed.
All data were quantified using TotalLab vers. 2.01
software (Nonlinear Dynamics, Newcastle upon
Tyne, UK).

Lysophospholipid treatments

One-millimolar solutions of LPA and S1P were
prepared in chloroform and methanol (1 : 9) and
stored at -20°C. PC-3 cells were cultured to a
subconfluent condition in complete media, washed
with Dulbecco’s phosphate-buffered saline
(DPBS), and then serum-starved in serum-free
medium for 16~24 h. LPA and S1P were then
added to cultures of serum-free RPMI1640 supple-
mented with 0.005% fatty acid-free BSA as a carri-
er.

Cell proliferation assay

The cell proliferation assay was carried out as
described previously (Davaille et al. 2000). PC-3
cells at 2 x 10^4 cells/well were seeded in 24-well
plates in complete media for 24 h. Before the
assays, media were changed to serum-free
RPMI1640 for 16 h. Serum-free RPMI1640 medi-
um containing serum and different concentrations
of LPA or S1P was then added. Cell numbers
were evaluated at various time points by directly
counting the resuspended cells using a hemacy-
tometer. Cell viability was evaluated by the trypan
blue exclusion method. Cells were photographed
using a Nikon (Tokyo, Japan) microscope with
interference contrast optics (20x objective).
Cell cycle analysis

Subconfluent cultures of PC-3 cells were serum-starved for 16 h, and incubated with 10% FBS or 10 μM S1P for 16 h at 37°C. Cells were suspended in 1 ml of PBS and 300 μl of staining solution containing 200 μg/ml RNase A, 20 μg/ml propidium iodide, and 0.1% Triton X-100. After incubation in a 37°C water bath in darkness for 20 min, the intensity of propidium iodide staining in each cell was analyzed by flow cytometry (CyFlow, Partec, Münster, Germany), and the cell cycle distribution was analyzed with a computer program (CyFlow® SL, Partec).

Annexin-V staining

Subconfluent cultures of PC-3 cells were serum-starved for 16 h, and incubated with 10 μM S1P for 24 h at 37°C. Arsenite (20 μM) was used to induce apoptosis as the positive control (Maeda et al. 2001). Cells were suspended in 200 μl PBS with FITC-conjugated Annexin-V (Strong Biotech Corporation, Taipei, Taiwan) according to the manufacturer’s protocols. Treated cells were subsequently analyzed by flow cytometry (CyFlow, Partec).

Propidium iodide uptake assay

The protocols of the PI uptake assay were modified from Ogbourne et al. (2004). In brief, 1 x 10^5 cells/well of PC-3 cells was seeded in a 6-well plate for 1 d and subsequently serum-starved for 16 h. Cells were incubated with 10 μM S1P or starvation medium for 24 h at 37°C and trypsinized using 0.05% trypsin-EDTA. After 500 xg centrifugation, cells were suspended in 1 ml PBS with 500 ng/ml propidium iodide at 37°C for 20 min in the dark. The intensity of propidium iodide uptake of PC-3 cells was analyzed by flow cytometry (CyFlow, Partec).

Cell staining

PC-3 cells were seeded on coverslips for 1 d, followed by 16 h of serum starvation. Serum-starved cells were then treated with 5 μM LPA or S1P for 10 or 30 min. Treated cells were washed 3 times with DPBS and fixed with 3.7% formaldehyde in DPBS for 30 min at room temperature. Fixed cells were permeabilized with 0.1% Triton X-100 in DPBS with 0.5% BSA for 30 min at room temperature. To investigate the cytoskeletal rearrangements, rhodamine-labeled phalloidin was added at 4°C overnight followed by 3 h at room temperature. Nuclei were stained with 4’,6-diamino-2-phenylindole (DAPI) before mounting. Cells were analyzed by fluorescence microscopy as described previously (Graler et al. 2003).

<table>
<thead>
<tr>
<th>Table 1. Human Edg receptor primer sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers</td>
</tr>
<tr>
<td>Edg1 S1P1</td>
</tr>
<tr>
<td>Edg5 S1P2</td>
</tr>
<tr>
<td>Edg3 S1P3</td>
</tr>
<tr>
<td>Edg6 S1P4</td>
</tr>
<tr>
<td>Edg8 S1P5</td>
</tr>
<tr>
<td>Edg2 LPA1</td>
</tr>
<tr>
<td>Edg4 LPA2</td>
</tr>
<tr>
<td>Edg7 LPA3</td>
</tr>
<tr>
<td>β-actin</td>
</tr>
</tbody>
</table>
Statistical analysis

Results are expressed as the mean ± the standard error of the mean (SEM). After exclusion of outliers by the R-test or Tn-test, the significance of differences between the control and different treatment groups was tested using two-way ANOVA followed by Fisher’s protected least-significant differences test (StatView; Abacus Concept, Berkeley, CA). A value of \(p < 0.05 \) was considered statistically significant.

RESULTS

Expression of Edg-2, -7, and -8 by PC-3 cells

Lysophospholipids mediate their physiological functions through activation of multiple specific membrane receptors. Edg receptor expression profiles differed among different cell types and different developmental stages (Lee et al. 2002). To investigate the Edg receptor expression profile of PC-3 cells, we used RT-PCR to detect mRNA expressions of Edg-1 to Edg-8. As shown in fig. 1, only Edg-2 (LPA₁), Edg-7 (LPA₂), and Edg-8 (S₁P₅) were expressed in PC-3 cells. These results suggest that the effects of S₁P on PC-3 cells likely occur through Edg-8.

Inhibition of PC-3 cell proliferation by S₁P

LPA is a well-known mitogen of PC-3 cells (Daaka 2002). However, even though it is considered to be a molecule with a similar structure and functions, the effects of S₁P on PC-3 cells remain unknown. Therefore, we were interested in determining if S₁P can also regulate the proliferation of PC-3 cells. We found that S₁P inhibited the growth of PC-3 cells in a concentration-dependent manner (Fig. 2A). Using serum and 5 \(\mu \)M LPA as a positive control, we did find significant induction of proliferation as described in previous work (Qi et al. 1998). The cell number of 10 \(\mu \)M S₁P-treated groups had decreased to 15.3% by 24 h. The cell number of 5 \(\mu \)M S₁P-treated groups had dropped

Fig. 1. Edg receptor expression profiles of PC-3 cells. RT-PCRs for human Edg receptors were performed with cDNA derived from PC-3 cells. PCR products were resolved on 1% agarose gels, stained with ethidium bromide, and photographed. Only Edg-2, Edg-7, and Edg-8 were found to be expressed in PC-3 cells. \(\beta \)-actin was used as the internal control.

Fig. 2. S₁P inhibition of PC-3 cell proliferation. PC-3 cells were treated with the indicated concentrations of S₁P for 24 h (A) or 10% FBS, 5 \(\mu \)M LPA, and either 1, 5, or 10 \(\mu \)M S₁P for 24, 48, and 72 h (B). Cells were washed by DPBS and trypsinized for counting using a hemacytometer. Similar experiments were repeated at least 3 times, and a representative result is shown in the figure. Data are presented as the mean ± SEM. *Statistically different as compared to the level in control cells (\(p < 0.05 \)).
to 48.6% by 24 h and to 15.5% by 72 h (Fig. 2B). However, with treatment at a low concentration of S1P (1 µM), the difference was not significant.

PC-3 cells arrested in the G$_1$ phase by S1P

S1P has been shown to be an antiapoptotic molecule in several reports (Spiegel and Milstien 2003a, Suomalainen et al. 2003). Therefore, we used flow cytometry to analyze the effect of S1P on the cell cycles of PC-3 cells (Fig. 3). After 16 h of 10 µM S1P treatment, PC-3 cells were arrested in the G$_1$ phase (86.1% in the S1P-treated group and 69.7% in the control group). Compared with the 10% FBS-treated groups, only 3.36% of the cells entered the S phase after S1P treatment, while 13.47% of the 10% FBS-treated PC-3 cells were in the S phase. The percentage of S1P-treated groups which remained in the G$_2$M phase (10.54%) was also only 1/2 of the control (21.6%) and 10% FBS-treated groups (21.53%).

PC-3 cell proliferation inhibited by S1P through an apoptosis-independent and necrosis-dependent pathway

Gennero et al. (2002) showed that in MEM cells under a low-cell-density culture condition, S1P activates stress-activated protein kinase (SAPK), which increases the degradation of S1P and the accumulation of sphingosine in the cytosol, and induces apoptosis. To investigate whether S1P inhibits PC-3 cell proliferation through inducing apoptosis, we used trypan blue to evaluate the viability of cells. No stained cells were observed in any of the experiments. Using flow cytometry to analyze the cell cycle of PC-3 cells after S1P treatment also showed no apoptotic populations (Fig. 3C). In addition, with DAPI staining of S1P-treated PC-3 cells, no DNA fragmentation was observed (Fig. 6I-L). We used FITC-conjugated annexin V to further confirm whether S1P induces apoptosis in PC-3 cells. Figure 4B shows that S1P treatment did not increase annexin-V staining. However, incubation of PC-3 cells with 20 µM arsenite for 24 h induced apoptosis as reported in previous work (Maeda et al. 2001). Since cell membrane instability is an early indicator of necrosis (Walsh et al. 1998), we used a PI uptake assay to determine if S1P causes necrosis of PC-3 cells. As shown in Fig. 4D, PI uptake increased in the 10 µM S1P-treated groups. These results suggested that S1P inhibits PC-3 cell proliferation through an apoptosis-independent and necrosis-dependent pathway.

Cell rounding and cytoskeletal rearrangement of PC-3 cells induced by S1P

It is known that LPA and S1P treatments induce actin reorganization and cell morphological changes (Ridley and Hall 1992, Postma et al. 1996). However, the effects of S1P on the cytoskeleton of PC-3 cells remain unclear. Herein, we show that S1P also caused significant morphological changes in PC-3 cells. As shown in Fig. 5B, most cells displayed a rounded morphology after 10 µM S1P treatment for 24 h. Compared with the control (Fig. 5A), although some rounded cells were observed, the ratio of rounded cells in the S1P-treated group significantly increased. We propose that S1P might induce cytoskeletal rearrangement and cause cell rounding, which may lead to inhibition of proliferation. To investigate this assumption, rhodamine-labeled phalloidin was used to test whether S1P induces actin reorganization. Figure 6L shows that a large amount of stress fibers was expressed in PC-3 cells after 5
μM S1P treatment for 10 min. After 30 min, actin fibers were concentrated in the region near the cell membrane, forming cortical rings (Fig. 6L), and some dark spots were also revealed near the nuclei (Fig. 6K). No similar pattern was observed in either the LPA-treated or control group. Additional pseudopodia formed after 5 μM LPA treatment for 10 min. However, the stress fibers were obvious only after 30 min (Fig. 6H). Our results suggest that S1P induces actin reorganization and cell rounding in PC-3 cells.

DISCUSSION

Lysophospholipids (S1P and LPA) are potent mitogenic mediators reported to influence cell behaviors in various pathophysiological situations (Goetzl et al. 2002, Xu et al. 2003). LPA has also been shown to induce PC-3 cell proliferation through activation of the ERK pathway (Kue et al. 2002). In the present study, we demonstrate that exposure to S1P inhibits proliferation by PC-3 cells and causes cell cycle arrest in the G1 phase. At a physiological concentration, S1P also induced cell rounding and cytoskeletal rearrangement. We propose that the cytoskeletal rearrangement might be highly related to the inhibition of proliferation caused by S1P. Although the actual concentration of S1P in prostate cancer tissue is unknown, the S1P concentration can rise to micromolar levels in the plasma (Igarashi et al. 1998). Therefore, we attempted to use S1P concentrations in our experiments which are likely within the physiological range.

S1P has been reported to act as a mitogen in

![Graph](image)

Fig. 4. S1P induction of necrosis but not apoptosis in PC-3 cells. PC-3 cells were treated with control media, 10 μM S1P, or 20 μM As2O3 for 24 h to induce apoptosis as the positive control. FITC-conjugated annexin V (A) or a non-detergent PI staining solution (C) was added to the cell suspensions after the indicated treatments, and cells were analyzed by flow cytometry. All experiments were repeated at least 3 times, and similar results were obtained. Data are presented as the mean ± SEM (B, D). Asterisks are used to indicate a statistically significant difference as compared to the level in control cells (**p < 0.01; ***p < 0.001).
several cell systems (Goetzl et al. 2002). However, it has been noted that S1P also inhibits cell growth of certain cell types (Van Brocklyn et al. 1998, Kim et al. 2004). It is currently unclear whether the growth inhibitory actions of S1P are membrane receptor-mediated. For instance, S1P-induced apoptotic signals have been shown to be mediated through a receptor-independent mechanism in human hepatic myofibroblasts (Davaille et al. 2002) and rat mesangial cells (Gennero et al. 2002). However, other reports suggested that S1P-induced apoptosis is associated with activation of Edg-3/Edg-5 Gq-coupled receptors (Moore et al. 1999, Van Brocklyn et al. 1999). Our results suggest that S1P’s inhibition of the proliferation of PC-3 cells is mediated through an apoptosis-independent and necrosis-dependent pathway. Currently, we cannot clearly distinguish if the inhibitory effect of S1P is due to a receptor-mediated mechanism. The specific small interference RNA technique for Edg-8 should be helpful for clarifying this issue in the near future.

Niedernberg et al. (2003) recently showed that overexpression of Edg-8 (S1P5) in CHO-K1 cells induces S1P-dependent cell rounding. In our experimental system, the only endogenously expressed S1P receptor in PC-3 cells was Edg-8, and we also found that S1P treatment induced cytoskeletal rearrangement and cell rounding. These results suggest that the cell rounding and actin reorganization induced by S1P might occur through Edg-8 and a downstream signaling pathway.

In the present study, we found that S1P inhibits PC-3 cell proliferation. To determine whether cell rounding is correlated with apoptotic cell death, nuclei were stained with DAPI. As shown in fig. 6, none of the rounded cells contained fragmented DNA in their nuclei, suggesting that S1P does not induce apoptosis in PC-3 cells. In addition, trypan blue exclusion, annexin V staining (Fig. 4A), and flow cytometric analysis (Fig. 3) also showed that S1P did not induce apoptosis.
Therefore, we exclude apoptosis as the cause of the inhibition of proliferation by S1P. In the PI uptake experiment, we found that S1P causes cell membrane instability without increasing annexin V staining (Fig. 4). Our results suggest that the growth inhibitory effect of S1P on PC-3 cells might be due to necrosis but not apoptosis.

The 2nd explanation for the inhibitory effect of S1P on PC-3 cells we propose is cell rounding. Our results showed that S1P induces actin fibers to concentrate in the region near the cell membrane where they form cortical rings, which was also correlated with cell rounding. This phenomenon might have 2 effects on the inhibition of PC-3 cell proliferation. First, cell rounding might cause PC-3 cells to more-easily detach from the culture dish. Loss of cell attachment may be a possible cause for the observed inhibition of proliferation. Second, cell rounding might weaken the interaction between integrins and the extracellular matrix (ECM). Interactions between integrins and the ECM have been shown to be important sources of cell growth and survival signals (Slack-Davis and Parsons 2004). Previous work demonstrated that cell morphological changes influence cell growth and survival through the integrin-ECM pathway (Tzima et al. 2002). In addition, changes of integrin-ECM interactions also regulate cell cycle arrest (Cordes and van Beuningen 2003). Therefore, we propose that the cell rounding caused by S1P might be correlated to the inhibition of PC-3 cell proliferation through integrin-ECM interactions.

In summary, our data demonstrate that S1P has antiproliferative properties in PC-3 cells, and this effect might be correlated with cell rounding and actin cytoskeletal rearrangement. This is the 1st study on the effects of S1P in PC-3 cells, and we also demonstrate the endogenous function of Edg-8 (S1P3). As only 1 S1P receptor (Edg-8) is expressed in PC-3 cells, we propose that S1P might be a good model system to investigate the physiological function and downstream signaling pathway of Edg-8.

Acknowledgments: We thank Dr. Jih-Hua Guh from National Taiwan Univ. Hospital for kindly providing PC-3 cells. We appreciate Dr. Hsi-Yuan Yang, Dr. Chien-Yuan Pan, and Mr. Chi-Lun Chang of the Institute of Zoology and Mr. Yu-Ting Kuo of the Department of Life Science, National Taiwan Univ. for technical assistance. This work was supported by grants NSC92-2311-B-002-095 and NSC93-2311-B-002-095 (to H. Lee) from the National Science Council, Taiwan.

REFERENCES

Kim DS, SY Kim, B Kleuser, M Schäfer-Korting, K Kim, K Park.

Tzima E, MA Del Pozo, WB Kiosses, SA Mohamed, S Li, S Chien, MA Schwartz. 2002. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganiza- tion and effects on gene expression. EMBO J. 21: 6791-6800.

