Sex Identification of the Black-faced Spoonbill (*Platalea minor*)

Yeong-Hsiang Cheng¹, Tzong-Fu Kuo², Der-Nan Lee¹, and Ching-Feng Weng³,*

¹Department of Animal Science, National I-Lan University, Ilan, Taiwan 260, R.O.C.
²Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 106, R.O.C.
³Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan 974, R.O.C.

(Accepted October 14, 2005)

Yeong-Hsiang Cheng, Tzong-Fu Kuo, Der-Nan Lee, and Ching-Feng Weng (2006) Sex identification of the Black-faced Spoonbill (*Platalea minor*). *Zoological Studies* 45(1): 104-113. The Black-faced Spoonbill (BFS), *Platalea minor*, endemic to East Asia, is a well-known species listed as globally “critically endangered”. It is difficult to recognize the gender of a BFS by its appearance; this can make it extremely difficult to implement human-assisted breeding programs, as well as evolutionary and ecological studies. In this work, therefore, a molecular approach was used to determine the sex of the endangered monomorphic BFS, as opposed to a morphological or histological approach. In Dec. 2002, an outbreak of *Clostridium botulinum* toxin type C killed many birds overwintering in the Tseng-Wen estuary, southwestern Taiwan, and this provided the opportunity to obtain muscle samples for DNA extraction. The polymerase chain reaction (PCR) with a single set of primers was employed to amplify a fragment in both the chromobox-helicase-DNA-binding genes (CHD)-W and CHD-Z; after electrophoresis, the products showed a single band in males, with females having a 2nd distinctive band. The PCR products for the CHD-Z and -W genes were 658 and 464 bp, respectively. The nucleotide sequences of these bands were further confirmed after cloning and sequencing. The nucleotide sequences of the CHD-Z and -W genes were 83% homologous. When using morphological and histological examination results for comparison, 26 birds (14 males and 12 females; sex ratio, 1.16) were correctly sexed using our test. This study is the first time that the gender of the Black-faced Spoonbill has been identified using the PCR technique; there is great potential for applying this tool for further investigations into the ecology and reproductive behavior of this species. http://zoolstud.sinica.edu.tw/Journals/45.1/104.pdf

Key words: Sex ratio, Chromobox-helicase-DNA-binding gene, Black-faced Spoonbill, *Platalea minor*, PCR.
nate incident also offered a great opportunity to explore these invaluable body samples and gain insights into potential environmental factors which might threaten this endangered species in the future.

In birds, females are heterogametic (ZW), while males are homogametic (ZZ). DNA sequencing provides us with a versatile way of discriminating male from female birds. Unfortunately, the selection of a suitable sex-linked marker is difficult. The obvious source is the W sex chromosome, as this occurs in the female (ZW) and not in the male (ZZ). However, similar to the human Y chromosome, it is small and offers a disproportionate amount of junk DNA (Stefos and Arrighi 1971). Such sequences evolve rapidly, even between closely related species, and therefore provide sex-linked markers of a limited range (Lessells and Mateman 1998). The 1st avian W chromosome gene that was discovered was the chromobox-helicase-DNA-binding (CHD-W) gene (Griffiths and Tiwari 1995), which is well conserved and linked to the W-chromosome in a range of bird species. Afterwards, more sex-determining related genes in the W- and Z-chromosomes of avian species were investigated and reviewed (Ellegren 2000). Recently, 2 major approaches have been developed to identify avian gender. One is based on the cellular level using, for example, karyotyping and flow cytometric methods (Nakamura et al. 1990, De Vita et al. 1994); the other uses molecular methods, such as PCR-RAPD (random amplified polymorphic DNA), AFLP (amplified fragment length polymorphism), amplification of microsatellite loci, and RFLP (restriction fragment length polymorphism) (Griffiths et al. 1996, Lessels and Mateman 1998, Griffiths and Orr 1999, Nesje and Roed 2000). It has been shown that a single set of PCR primers can be used to sex birds throughout the Class Aves, with the exception of ratites (Griffiths and Tiwari 1996, Griffiths et al. 1996). These primers amplify homologous parts of the CHD-W gene, and the related CHD-Z gene, at the same time (Griffiths and Korn 1997). Because the CHD-Z gene occurs in both sexes, it will always be amplified, ensuring that the PCR reaction works. However, as the 2 CHD products are of the same size, Griffiths et al. (1996) used a restriction enzyme to selectively cut a fragment from the CHD-Z version before gel electrophoresis. Upon examination, females had 2 bands and males only 1. It seems that a single, simple PCR-RFLP technique based on both genes can be used to identify gender in a wide variety of birds. Molecular sexing has been shown to be a rapid and uninvasive procedure. Survival of most endangered birds may depend on breeding programs where sex identification plays an important role (Bermudez-Humaran et al. 2002). In this study, we used PCR amplification of the CHD-Z and -W genes in an application to determine the gender of monomorphic endangered Black-faced Spoonbills, in contrast to morphological and histological examinations.

MATERIALS AND METHODS

Tissue collection and metrology of the gonads

Tissue samples (n = 26, 0.2 g in weight) were taken from the breast muscle of dead BFSs, and samples were sealed in plastic bags and frozen at -20°C before DNA extraction. The gonads of all sexually mature birds were metrologically measured.

DNA extraction

The DNA extraction procedure was carried out according to Cheng et al. (2003). Briefly, 50 mg of muscle tissue was minced and digested overnight at 37°C, with 400 µl digestion buffer (0.1 M NaCl, 10 mM Tris-HCl (pH 8.0), and 5 mM EDTA in 0.5% SDS containing 100 µg/ml proteinase K). After the addition of 1000 µl PCI (phenol: chloroform: isoamyl alcohol, 25: 24: 1), the vial was left to stand for 10 min then centrifuged at 10,000 xg for 10 min. Total DNA in the aqueous phase was precipitated with 1/10 volume of 3 M sodium acetate (pH 5.2) and 2 volumes of cold 100% ethanol at 4°C for 30 min. DNA pellets were obtained by centrifugation (13,000 xg for 10 min), washed twice each with 70% and 100% ethanol, air-dried, and then resuspended in 25 µl TE buffer. The nucleic acid concentration was measured by spectrophotometry at 260 nm.

PCR program

One microliter of the supernatant (template DNA) was added to 9 µl of the PCR mixture, containing 50 mM Tris-HCl (pH 8.5), 20 mM KCl, 3 mM MgCl2, 0.05% bovine serum albumin, 0.2 mM of dNTP, and 0.25 µM of each primer (5'-GTTACTGATTCGTCTA CGAGA-3' and 5' ATT-GAAATGATCCAGGCTT-3'; published by Hornfeldt et al. 2000) and applied to 0.2 U of Taq DNA poly-
merase. The PCR program had a hot start: pre-heating to 95°C for 7 min, then denaturing at 95°C for 1 min, annealing at 45°C for 1 min, and extension at 72°C for 1 min for a total of 30 cycles, with a final extension at 72°C for 7 min. Electrophoresis was performed on a 2.5% agarose gel containing 0.5 µg/ml ethidium bromide.

Cloning and sequencing

PCR fragments were cloned into a PCR vector (YT and A) using a TOPO cloning kit. Sequences of clones were determined by the dye terminator technique on an automatic sequence model 373A instrument, following the manufacturer’s recommendations (Applied Biosystems, Foster city, CA, USA), and DNA alignments were performed using GCG Sequence Analysis Software (Genetic Computer Group, Madison, WI, USA). The nucleotide sequences of CHD-Z and -W genes were submitted to the GenBank database (accession nos.: AY464013 and AY464014).

RESULTS

The gonad metrological data are shown in Table 1. The results indicated that testis weight was in the range of 0.226-0.262 g, with the left side being heavier than the right. The testis had a long oval-like shape, with its length being greater than its width. Ovary weight (1.750 g) and length (1.764 cm) were also determined. The PCR products for the Z and the W chromosomes were 658 and 464 bp, respectively. The male had a single band (of 658 bp), while the female had 2 different bands (of 658 and 464 bp) (Fig. 1).

Table 1. Sexual gonad metrology of the Black-faced Spoonbill, *Platalea minor*

<table>
<thead>
<tr>
<th></th>
<th>Testis weight (g)</th>
<th>Testis length (cm)</th>
<th>Testis width (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.262 ± 0.317</td>
<td>0.857 ± 0.184</td>
<td>0.600 ± 0.185</td>
</tr>
<tr>
<td>R</td>
<td>0.226 ± 0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovary weight (g)(^a)</td>
<td>1.750 ± 1.250</td>
<td>1.764 ± 0.495</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Ovary data were only measured on the left side. Data are presented as the mean ± SD.
The partial nucleotide sequences of the BFS CHD-Z and -W genes are shown in figure 2a; after sequence alignment, they were 83% homologous. Alignment of the BFS’s CHD-Z gene with the Japanese cormorant’s (Phalacrocorax capillatus) CHD1Z gene is shown in figure 2b. Alignment of the BFS CHD-W gene with the P. capillatus CHD1W gene is shown in figure 2c. The nucleotide sequences of the spoonbill CHD-W and -Z genes showed high similarity with the P. capillatus CHD1Z and CHD1W genes, respectively. In comparing the BFS CHD-Z and -W genes with other published sequences, the homology was 98% in the CHD-Z (120 nucleotides [nt]) (Fig. 3a) and 99% in the CHD-W (103 nt) (Fig. 3b), respectively. This indicates that the nucleotide sequences of avian CHD-Z and -W are well conserved. The results obtained by the anatomic sex gland examinations of the 26 birds (with a male/female ratio of 14/12; sex ratio, 1.16) completely matched the sex-identification by CHD-Z and -W. This confirmed that gender determination, using a molecular approach, is indeed reliable in this species.

DISCUSSION

The present study applied a new PCR approach to determine the gender of the endangered, monomorphic Black-faced Spoonbill, as opposed to the more-commonly used morphological or histological examination methods. After the cloning and sequencing of the BFS CHD-Z and -W genes, it was obvious that these partial nucleotide sequences, CHD-Z and -W, might be good markers for identifying the sex of some other avian species.

Recently, 2 major approaches have been developed to identify avian gender. One is based at the cellular level, using, for example, karyotyping and flow cytometric methods (Nakamura et al. 1990, De Vita et al. 1994); the other uses a molecular genetic method, such as PCR-RAPD (random amplified polymorphic DNA), AFLP (amplified fragment length polymorphism), amplification of microsatellite loci, and RFLP (restriction fragment length polymorphism) using restriction enzyme digestion (Griffiths et al. 1996, Lessels and Mateman 1998, Griffiths and Orr 1999, Nesje and Roed 2000). In this study, we applied a molecular approach, focusing on the 2 CHD genes, to determine the gender of BFSs. The test employed a PCR with primers that were annealed to the conserved exonic region and across an intron in both the CHD-W and -Z genes (Fig. 4). Because the intron is a non-coding region and is not well conserved, the nucleotide lengths usually differ between these 2 genes. The simplest protocol available for molecular sexing with CHD takes advantage of intronic length differences that may exist in the 2 copies (Ellegren and Sheldon 1997). The PCR, with intron-flanking primers, yielded a particular length for the CHD-W product and another length for the CHD-Z product. There are some PCR-based methods of sexing domestic poultry, using only W chromosome-specific primers, which revealed some shortcomings when no products could be observed after PCR (Saitoh et al. 1989, Clinton 1994); furthermore, it can be a laborious and tedious task when performed on large numbers of samples, using 2 different primer pairs (D’Costa and Petitte 1998). This PCR tool has the advantages over uniplex PCR of sparing reagents and requiring less sample preparation time. The primer pairs of P2/P8, designed by Griffiths et al. (1998), were tested. However, the
PCR female gender CHD-W and -Z products were too close, and therefore observing a difference between the bands, using agarose gel analysis, was too difficult (data not shown). Another possible solution is the use of 8% denaturing polyacrylamide gels which provide sufficient resolution to discriminate between these 2 products.

The metrology of the sex gonads in the BFS, including weight and other measurements, showed that during Dec. 2002, the birds were not in breeding season, as the gonads were in a resting phase. The breeding season of this bird is reported as being from late May to early Aug. at Tok-do I. (38° 45′N, 124° 58′E), N. Korea (Chong et al. 1996). Almost all BFSs have arrived in Taiwan by Dec. After the long migration, finding emergency energy and nutrient requirements is crucial; the majority of the birds, therefore, catch any available live or dead fish for food, becoming susceptible to a contaminated environment and botulism toxicosis exposure. Thus the conservation of the Black-faced Spoonbill, Platalea minor, a critically endan-

Fig. 3 (A)
gered species endemic to East Asia, is becoming more critical. In order to implement human-assisted breeding programs for such endangered species, it is also crucial to be able to determine the gender of these monomorphic birds. In the meantime, non-invasive and reliable methods must be developed to further study this endangered species, such as collecting and separating cells from feces. This study is the first evidence to identify the gender of the Black-faced Spoonbill using the PCR molecular tool; the PCR approach has great potential for ecological and reproductive-behavior research applications, particularly for future breeding programs.

Acknowledgments: We wish to acknowledge Mr. S. C. Liu (Duck Research Center, Ilan, Taiwan) for his invaluable suggestions and technical assistance, and also to express our deep compassion for the fate of the birds used in this study.

Fig. 3 (B)

```
10 20 30 40 50 60
S ATGAAATGATCCCAGTCTGGTTTCCTCCATCTCAGTCCTCTCT
P G.TACTG...GT...ACG.G.ACGTG...CAAGG...

70 80 90 100 110 120
S AACAGATTTGATATATACCGTTAAAGAGACCTCCTCACT

130 140 150 160 170 180
S GAGTTCCTATTTGCCCAAAATCATGGGGGGGGGGGGGGGATAGTATAGTATAG

190 200 210 220 230 240
S CCTCTCTTCTTCAATTCATATCTTTTCATTTTTCATTTTATATCTTTTATATTCTTTATAC
P ...T....AG...G....GIG..C..T...TGT..GA..AG...T..TG..AGT.....T.Ä

250 260 270 280 290 300
S AGCTTTTTCTGTACATATATATATATATATATATATATATATATATATATATATATATAT
P C..A..AGGAAGAG...TTGGC.....CTAAG..GC.....AG..AT..TIG...T.A.Ä---C.

310 320 330 340 350 360
S CTGGACATGATAGCCTAAGATGCTCCTGTGCTCTACACATACCATCTTTCTTTCTTT

370 380 390 400 410 420
S AACGGGAAACCTGACGCTCTTCATATATCTTTGCTAGTTACTACATCCCCTCTCTTC

430 440 450 460 470 480
S AGGAAAAACTGACGCTCTTCATATATCTTTGCTAGTTACTACATCCCCTCTCTTC
P GTGT..TC..TT..GAGAC...TTGGG..CRA..A.AA..GG.....TGAGGAAACGACGCTC

490
S
P GATCTTTTCAAT
```
Fig. 3. (A) Alignment of CHD-Z and -W partial nucleotide sequences in the Black-faced Spoonbill. An asterisk (*) indicates an identical sequence between CHD-Z and -W. (B) Alignment of Black-faced Spoonbill CHD-Z (S) with the *Phalacrocorax capillatus* CHD1Z (P) gene. (C) Alignment of Black-faced Spoonbill CHD-W (S) with the *Phalacrocorax capillatus* CHD1W (P) gene.
Fig. 4. (A) Comparisons of Black-faced Spoonbill CHD-Z (120 nucleotides) with the CHD-Z of some other bird species. (see footnote in appendix)

References

229.
APPENDIX I: