Description of A New Species of the Gudgeon Genus Microphysogobio Mori 1934 (Cypriniformes: Cyprinidae) from Guangdong Province, Southern China

Shih-Pin Huang1, I-Shiung Chen2,3, Yahui Zhao4, and Kwang-Tsao Shao5,*
1Biodiversity Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan. E-mail: huangshihpin@gmail.com
2Institute of Marine Biology, National Taiwan Ocean University, Jhongheng, Keelung 20224, Taiwan. E-mail: isc@ntou.edu.tw
3National Museum of Marine Science and Technology, Jhongheng, Keelung 20248, Taiwan
4Key Laboratory of Zoological Systematics and Evolution Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China. E-mail: zhaoyh@ioz.ac.cn
5National Taiwan Ocean University, Jhongheng, Keelung 20224, Taiwan

(Received 5 July 2018; Accepted 28 October 2018; Published 13 December 2018; Communicated by Hin-Kiu Mok)

Shih-Pin Huang, I-Shiung Chen, Yahui Zhao, and Kwang-Tsao Shao (2018) Microphysogobio luhensis n. sp., a new cyprinid species, is described from the Rongjiang River in eastern Guangdong Province, China. Morphological characters and molecular evidence based on mitochondrial DNA Cytochrome b (Cyt b) and Cytochrome oxidase subunit I (COI) sequences were used to compare this new species with other related species from mainland China, Vietnam and Taiwan. The present molecular evidences revealed that this new species is closely related to M. kachekensis and M. yunnanensis. However, these three species can be well distinguished based on the number of small pearl-like papillae on their inside papillae, lip papillae shape, barbel length, barbel width and color pattern. Furthermore, the morphometric comparison between M. kachekensis and the poorly known species M. yunnanensis is also discussed in this study for the first time. In addition, a diagnostic key to all 14 valid species of Microphysogobio from southern mainland China, Hainan Island and Taiwan is also provided.

Key words: Freshwater Fish, Taxonomy, Rongjiang River, Gudgeon, Cytochrome b.

BACKGROUND

Microphysogobio Mori, 1934 is a genus of small benthic gudgeons under the subfamily Gobioninae (Cypriniformes: Cyprinidae), which is widely distributed in eastern Asia, including Russia, Korea, mainland China, Hainan Island, Mongolia, Taiwan, Vietnam and Laos, and usually occurs in the upper and middle reaches of river systems (Cheng and Zheng 1987; Kottelat 2001a b).

Thirty species of Microphysogobio have been considered valid in the world (Eschmeyer et al. 2018). Twenty of which are found in China (Jiang et al. 2012; Huang et al. 2017). The Yangtze River is the longest river in China, and forms a natural boundary between northern and southern China. Among 20 species found in China, six species are considered as endemic to northern China, including M. amurensis (Taranetz, 1937), M. liaohensis (Qin, 1987), M. linghensis Xie, 1986, M. h싱lungshanensis Mori, 1934, M. wulonghensis Xing, Zhao, Tang and Zhang, 2011, and M.

A few species of *Microphysogobio* were recently described based on combined morphological and molecular evidence; these molecular phylogenetic studies not only provide molecular evidence, but also show the phylogenetic relationships between members of the subfamily (Huang et al. 2016 2017). Four species of *Microphysogobio* from southern China and one from northern China have been described as new species in the past ten years. These surveys greatly promote our understanding of biodiversity and distribution of *Microphygobio* in China.

Microphysogobio kachekensis was reported to be widely distributed in Guangdong Province in southern mainland China, Vietnam and its type locality, Hainan Island, which lies off the coast of Guangdong Province (Pan 1991; Kottelat 2001b). An additional nominal species, *M. laboideis*—also described from Hainan Island—was regarded as a junior synonym of *M. kachekensis* (Kottelat 2001b). Huang et al.’s (2017) molecular analysis of the phylogenetic relationships among *Microphysogobio* species found significant genetic divergence between materials identified as *M. kachekensis* from Hainan Island and mainland China. Our morphological and molecular analyses results indicate that populations of *M. kachekensis* from the Rongjiang drainage of southern China belong to a previously unnamed, distinct species described herein.

MATERIALS AND METHODS

Sample collection

All examined specimens were collected by casting net or bought from local markets. The sampling localities are shown in figure 1. Specimens used for morphological studies were fixed in 10% formalin solution for three to five days, followed by 70% ethanol for long-term preservation. Tissue samples used for molecular analysis were preserved in 95% ethanol.

Morphological studies

All morphometric measurements followed Hosoya et al. (2002), and meristic counts followed Chen et al. (2009). Most of the morphometric measurements and the definition of lip papillae followed Huang et al. (2017). In this study, the proportion of the eye diameter, snout length, entire papillae lobe length, posterior papillae lobe length, inside papillae lobe length, medial pad length, barbel length and maximum barbel diameter were respectively measured as diagnostic features and given in table 1. The lip papillae system consisted of three parts, including anterior papillae on upper lip, a pair of inside papillae on lower lip, and single medial pad on lower lip. The inside papillae on lower lip comprised dozens of pearl-like small papillae (Fig. 4), the number of pearl-like small papillae were counted using a microscope and is given in table 1. An illustration for morphometric measurements of lip papillae is given in figure 4c. All lengths used in this study are standard length (SL).

All examined specimens were deposited at the Biodiversity Research Museum, Academia Sinica, Taipei (ASIZP); National Taiwan Ocean University, Keelung (NTOUP); National Museum of Natural Science, Taichung (NMNS); the Institute of Zoology, Chinese Academy of Sciences, Beijing (ASIZB); American Museum of Natural History, New York (AMNH); United...
Table 1. Comparison of morphometric measurements of lip papillae of *Microphysogobio luhensis* n. sp. and its related species *M. kachekensis* and *M. yunnanensis*

<table>
<thead>
<tr>
<th>Species</th>
<th>M. luhensis</th>
<th>M. kachekensis</th>
<th>M. yunnanensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Rong River, China</td>
<td>Hainan Island, China</td>
<td>Red River, Vietnam</td>
</tr>
<tr>
<td>Number</td>
<td>5 Ave.</td>
<td>6 Ave.</td>
<td>6 Ave.</td>
</tr>
<tr>
<td>Standard length (mm SL)</td>
<td>48.4-62.1</td>
<td>50.7-75.1</td>
<td>37.8-47.9</td>
</tr>
<tr>
<td>% of head length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye diameter</td>
<td>25.2-27.9 (26.9)</td>
<td>24.4-28.0 (26.3)</td>
<td></td>
</tr>
<tr>
<td>Snout length</td>
<td>40.2-45.0 (42.9)</td>
<td>42.1-46.4 (44.0)</td>
<td>36.6-39.0 (37.8)</td>
</tr>
<tr>
<td>Entire papillae lobe length</td>
<td>26.5-29.8 (28.2)</td>
<td>30.8-33.7 (31.9)</td>
<td></td>
</tr>
<tr>
<td>Posterior papillae lobe length</td>
<td>15.1-19.7 (17.2)</td>
<td>21.3-25.2 (22.9)</td>
<td></td>
</tr>
<tr>
<td>Inside papillae lobe length</td>
<td>10.5-13.6 (12.3)</td>
<td>13.5-16.5 (15.1)</td>
<td></td>
</tr>
<tr>
<td>Medial pad length</td>
<td>10.4-11.0 (10.7)</td>
<td>10.0-11.3 (10.6)</td>
<td>8.9-9.7 (9.3)</td>
</tr>
<tr>
<td>Barbel length</td>
<td>16.2-18.4 (17.9)</td>
<td>21.0-23.8 (22.6)</td>
<td></td>
</tr>
<tr>
<td>% of barbel length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum barbel diameter</td>
<td>27.0-29.8 (28.3)</td>
<td>15.0-18.8 (17.2)</td>
<td></td>
</tr>
<tr>
<td>Number of small pearl-like papillae on inside papillae</td>
<td>20-26 (23.3)</td>
<td>32-40 (34.8)</td>
<td>30-41 (36.2)</td>
</tr>
</tbody>
</table>

*Several items for morphometric measurement of *M. yunnanensis* collected from northern Vietnam were absented due to the deformation of partial lip papillae and barbel.
Molecular phylogenetic studies

Full length mitochondrial DNA Cytochrome b (Cyt b) sequences were used as molecular evidence. DNA extractions of the samples used a high purity product preparation kit (Roche, USA). Sequences were amplified by PCR using two primers: (cytbF1: 5'-TGA CTT GAA GAA CCA CCG TTG TA-3’ for forward primer; cytbR1: 5’-CGA TCT TCG GAT TAC AAG ACC GAT G-3’ for reverse primer) following Huang et al. (2016).

In order to strengthen the reliability of molecular evidence in the present analysis, another molecular phylogenetic analysis was performed using the partial COI gene, all examined species of Microphysogobio in the present study were included. The COI gene was amplified by PCR using the following two primers: (FishF1: 5’- TCAACCAACCACAAAAGACATTGGCAC -3’; FishR1: 5’- TAGACTTCTGGTGCCAAAGAATCA -3’), following Ward et al. (2005). All primers were also used as the primers for DNA sequencing. PCR was done in a MODEL 2700 or 9700 thermal cycler (Perkin-Elmer) for 35-40 cycles. Double-stranded PCR products were purified using a high purity product purification kit (Roche, USA) before undergoing direct cycle sequencing with dye-labeled terminators (ABI Big-Dye kit). Labeled fragments were analyzed using an ABI PRISM Model 377-64 DNA Automated sequencer (ABI, USA).

Sequence alignment was carried out using BIOEDIT version 5.9 (Hall 2001), and then verified manually. Aligned mutation sites was analyzed using Molecular Evolutionary Genetics Analysis (MEGA) version 7.0 (Kumar et al. 2016). The best-fit model for reconstructing the phylogenetic tree was determined using jModelTest v.2.1.3 (Darriba et al. 2012). The Bayesian inference (BI) analyses were performed using MrBayes 3.0 (Ronquist and Huelsenbeck 2003). The posterior probabilities of each node were computed from the remaining 75% of all sampled trees.

RESULTS

TAXONOMY

Family Cyprinidae

Microphysogobio luhensis n. sp. (Figs. 2; 3a b; 4a)

urn:lsid:zoobank.org:act:855FE0C8-8BF1-48E8-B29E-56C39F68863C

Material examined: Holotype: NTOUP 2013-10-119, 56.2 mm SL, Rong River (Rongjiang), Dongkeng Town, Luhe County, Guangdong Province, China (23°18’15.4”N, 115°42’51.4”E), coll. S.P. Huang, 2 April 2009. Paratypes: ASIZP 0080740, 2 specimens, 48.3-60.8 mm SL. NTOUP 2010-11-545, 1 specimen, 52.7 mm SL. ASIZB 204717, 1 specimen, 57.3 mm SL. Paratypes were collected with holotype. Non-types: NTOUP 2013-10-116, 3 specimens, 46.7-53.7 mm SL, collected with holotype.

Diagnosis: This new species can be distinguished from other congeners by the following unique combination of features: (1) meristic accounts: anal fin rays 3, 6; pectoral fin rays 1, 12-13 (modally 13); lateral-line scales 37-38 (modally 37); transverse scales 7; predorsal scales 10-11 (modally 10); gill rakers 16; vertebral counts 4 + 33-34; inside papillae lobes covered with clusters of 20-26 well-developed pearl-like papillae; (2) lip papillae: A pair of barbels flat and slightly short, 16.2-18.4% of head length, maximum barbel diameter was measured as 27.0-29.8% of barbel length; the medial pad on lower lip divided; (3) color patterns: Body with five distinct black crossbars; Two horizontally aligned black dashes above and below each lateral-line scale; caudal fin membrane with two rows of distinct vertically-aligned black lines.

Description: Body elongated and compressed laterally. Snout pointed. Eye moderately large and located in dorsal half of head, eye diameter was measured as 25.2-27.9% of head length. Belly flattened in males, and slightly rounded in females. Body covered with moderately small cycloid scales which are larger posteriorly. The morphometric measurements of this new species are provided in table 2.

Inter-pectoral fin basal region always naked, but rear margin of which, backward extending to anal fin anterior base always covered with cycloid scales. Lateral line complete and running slightly downward abruptly above pectoral fin and along
the ventral profile into middle of caudal fin base.

Vertebral counts 4 + 33 (in 1 individual)-4 + 34 (1). Gill rakers 16 (1). Dorsal fin rays 3, 7 (8), anal fin rays 3, 6 (8), pectoral fin rays 1, 12 (2)-1, 13 (11), pelvic fin rays 1, 7 (15). Lateral line scales 37 (11)-38 (5), transverse scales 7(8), predorsal scales 10 (6)-11 (2). Pectoral fin maximum reach anterior margin of pelvic fin when compressed in both sexes. Pelvic fin rounded. Anterior margin of pelvic fin inserted below second branched ray of dorsal fin. Caudal fin deeply forked and rear margin of caudal fin lobe rounded. Snout is prominent, 40.2-45.0% of head length.

Lip papillae: Mouth horseshoe-shaped. Upper and lower lip thick, covered with pearl papillae. Lip papillae consists of three parts: a pair of papillae on upper lip, and backward extending to the base of barbel; a pair of inside papillae lobes on lower lip; and a heart-shaped medial pad on lower lip. On upper lip, anterior papillae covered with one row of large pearl-like papillae, both posterior lobes covered with clusters of well-developed, small pearl-like papillae. Posterior margin of both inside papillae lobes rounded, and covered with clusters of 20-26 well-developed, small pearl-like papillae (Table 1). The medial pad on lower lip completely divided. The lip papillae of *M. luhensis* is shown in figure 4.

The morphometric measurements of papillae and barbell were shown in table 1. Entire papillae lobe was measured as 26.5-29.8% of head length. A pair of posterior lobes and inside papillae lobes were measured as 15.1-19.7% and 10.5-13.6% of head length, respectively. Medial pad was measured as 10.4-11.0% of head length. A pair of barbels flat and slightly short, located at corners of mouth and rooted at posterior edge of lower jaw, 16.2-18.4% of head length. Maximum barbel diameter was measured as 27.0-29.8% of barbel length.

Coloration in fresh specimen: Head and body generally pale yellowish brown (Fig. 2). Belly pale grayish white. Body with five distinct black crossbars (four bars on trunk and one bar on neck) (Fig. 3). Cheek and lower opercular regions bright sliver-white, and with a few indistinct small black spots. Upper opercular region grayish brown. A distinct bar is present on anterior margin of

| Table 2. Morphometric measurements of *Microphysogobio luhensis* n. sp. |

<table>
<thead>
<tr>
<th>Types</th>
<th>Holotype</th>
<th>Holotype + Paratypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>5 Ave.</td>
</tr>
<tr>
<td>Percentage of standard length (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head length</td>
<td>24.6</td>
<td>22.9-24.6 (23.6)</td>
</tr>
<tr>
<td>Body depth</td>
<td>17.3</td>
<td>15.0-18.2 (16.7)</td>
</tr>
<tr>
<td>Body width</td>
<td>14.2</td>
<td>12.7-14.5 (13.7)</td>
</tr>
<tr>
<td>Depth of caudal peduncle</td>
<td>8.2</td>
<td>7.9-8.4 (8.1)</td>
</tr>
<tr>
<td>Length of caudal peduncle</td>
<td>21.4</td>
<td>19.4-21.4 (20.6)</td>
</tr>
<tr>
<td>Predorsal length</td>
<td>43.9</td>
<td>41.5-43.9 (42.6)</td>
</tr>
<tr>
<td>Preanal length</td>
<td>52.7</td>
<td>51.6-53.4 (52.6)</td>
</tr>
<tr>
<td>Prepelvic length</td>
<td>44.7</td>
<td>44.6-45.2 (44.7)</td>
</tr>
<tr>
<td>Height of dorsal fin</td>
<td>20.3</td>
<td>19.2-20.3 (19.7)</td>
</tr>
<tr>
<td>Length of depressed dorsal</td>
<td>21.7</td>
<td>21.2-22.5 (21.6)</td>
</tr>
<tr>
<td>Length of dorsal fin base</td>
<td>13.2</td>
<td>11.2-13.2 (12.3)</td>
</tr>
<tr>
<td>Height of anal fin</td>
<td>12.8</td>
<td>12.8-14.7 (13.7)</td>
</tr>
<tr>
<td>Length of depressed anal</td>
<td>17.1</td>
<td>16.3-17.1 (16.7)</td>
</tr>
<tr>
<td>Length of anal fin base</td>
<td>7.8</td>
<td>7.8-8.9 (8.2)</td>
</tr>
<tr>
<td>Pectoral fin length</td>
<td>20.1</td>
<td>20.1-21.6 (20.8)</td>
</tr>
<tr>
<td>Pelvic fin length</td>
<td>15.3</td>
<td>15.3-16.6 (16.0)</td>
</tr>
<tr>
<td>Percentage of head length (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head depth</td>
<td>53.6</td>
<td>51.1-55.9 (53.0)</td>
</tr>
<tr>
<td>Head width</td>
<td>52.2</td>
<td>50.4-53.1 (51.6)</td>
</tr>
<tr>
<td>Snout length</td>
<td>44.2</td>
<td>40.2-45.0 (42.9)</td>
</tr>
<tr>
<td>Orbit diameter</td>
<td>26.1</td>
<td>25.2-27.9 (26.9)</td>
</tr>
<tr>
<td>Interorbital width</td>
<td>23.2</td>
<td>22.1-25.0 (23.5)</td>
</tr>
</tbody>
</table>

© 2018 Academia Sinica, Taiwan

Distribution: Known only from the upper reaches of the Rongjiang River (Rong River), a river located in eastern Guangdong Province, southern China (Fig. 1).

Etymology: The Latinized specific name, “luhensis” is refers to “Luhe County”, located in northeastern Guangdong Province, China, wherein lies the type locality.

Remarks: On the aspect of morphological feature, compared to all 22 valid *Microphysogobio* species from related areas, *M. luhensis* can be immediately distinguished from five valid species (*M. chenhsienensis, M. chinssuensis, M. exilicauda, M. tafangensis* and *M. wulonghensis*) by the different types of medial pad on lower lip (centrally divided vs. undivided).

As to the remaining 17 species, *M. luhensis* can be discriminated from *M. hsinglungshanensis, M. liaohensis, M. linghensis* and *M. nudiventris* by the different pattern of scale distribution (midventral region covered with scales vs. midventral region naked). Out of the remaining 13 species, this new species can be distinguished from *M. tungtingensis* and *M. zhangi* by having more anal fin rays (3, 6 vs. 3, 5). Compared to the remaining 11 species, *M. luhensis* can be distinguished from *M. alticorpus, M. amurensis, M. microstomus, M. kiatingensis* and *M. xianyouensis* by having different frequency distribution of lateral-line scale series (37-38 vs. 39-42 for *M. amurensis*, 35-36 for *M. alticorpus, M. kiatingensis* and *M. xianyouensis*; 34 for *M. microstomus*).

As to the remaining five species, *M. luhensis* can be discriminated from *M. yunnanensis* by having fewer pearl-like papillae on inside papillae (20-26 vs. 30-41), and this new species can be distinguished from *M. elongatus* by having more vertebral counts (4 + 33-34 vs. 4 + 32).

Compared to the remaining four species, *M. luhensis* can be distinguished from *M. brevirostris, M. fukiensis,* and *M. pseudoelongatus* by having different type of medial pad (heart-shaped for *M. luhensis* vs. rectangular form for the rest)(Fig. 4). Of all the valid species of *Microphysogobio*, the new species appears to be most closely related to *M. kachekensis* based on molecular evidence and some morphological features. Both species share similar anal fin rays (3, 6), predorsal scale series (10-11), spotted dorsal fin and caudal fin, and these two species with two horizontally aligned black dashes above and below each lateral-line scale. However, *M. luhensis* still can be distinguished from *M. kachekensis* based on following morphological difference: (1) *M. luhensis* has shorter and broader barbel (16.2-18.4% of head length and 27.0-29.8% of barbel length, respectively) when compared to *M. kachekensis* (21.0-23.8% of head length and 15.0-18.8% of barbel length, respectively); (2) *M. luhensis* has fewer pearl-like papillae on inside papillae (20-26 vs. 32-40); (3) the rear margin of posterior papillae lobe always in arc-shaped for *M. luhensis*, and

Fig. 2. The specimen photographs of *Microphysogobio luhensis* n. sp., holotype, NTOUP 2013-10-119, 56.2 mm SL.

Fig. 3. The dorsal view of *Microphysogobio luhensis* n. sp. (a, b) and *Microphysogobio kachekensis* (c, d), standard length was measured as 56.2, 57.3, 50.3 and 68.2 mm SL for individual a, b, c and d, respectively.
in tassel-shaped for *M. kachekensis*; (4) different color patterns (presence vs. absence of five distinct black crossbars at body); and (5) fewer lateral-line scale series (modally 37 vs. 38).

Pseudogobio labeoides Nichols and Pope, 1927 which was described from Nodoa, Hainan Island, China, was previously regarded as a junior synonym of *Microphysogobio kachekensis* (Kottelat 2001b). In order to confirm the taxonomic status of *P. labeoides*, its holotype specimen was examined. The result revealed that *P. labeoides* should be conspecific with *M. kachekensis*, both share the same type of medial pad on lower lip, the rear margin of medial pads always in arc-shaped (Fig. 4b). In addition, *P. labeoides* and *M. kachekensis* share the longer and slender barbel. *P. labeoides* can be immediately distinguished from *M. luhensis* by the latter species having an acuminate rear margin and having shorter and broader barbel (Fig. 4a). Our result was consistent with Kottelat’s taxonomic treatment, suggesting the *P. labeoides* should be treated as a junior synonym of *M. kachekensis*. Under the subfamily Gobioninae, both *Microphysogobio* and *Pseudogobio* are common benthic gudgeon distributed in East Asia. In addition, these two genera share similar characters, including have a pair of barbels and lip covered with pearl papillae. However, *Pseudogobio* can be distinguished from *Microphysogobio* by having flatter snout and longer snout (longer than two times of eye diameter) (Pan 1991).

Otherwise, *Microphysogobio luhensis* is further compared with several nominal species of *Microphysogobio* distributed in Vietnam, Mongolia, and the Yalu River, which forms the border between China and North Korea. The results are discussed as follows. When compared to the *M. yaluensis* (Mori, 1928) known from the Yalu River, *M. luhensis* can be distinguished by having more pectoral fin rays (1, 12-13 vs. 1, 11).

Microphysogobio luhensis differs from *M. anudarini* Holcík and Pivnička, 1969, a species

Fig. 4. Lip papillae of a, *Microphysogobio luhensis* n. sp., holotype; b, *Microphysogobio kachekensis*, NTOUP 2013-10-117, 64.4 mm SL; c, an illustration for morphometric measurements of lip papillae. Scale bar = 1 mm.
known from Mongolia, by having significantly shorter distance between the anus and anal fin origin (17.2-17.6% of SL, averaged 17.4%, measured from five individuals including holotype versus 19.0-20.8% of SL, using previous data from the literature reported by Kottelat in 2006). *M. luhensis* has two irregular lines on caudal fin membrane, but it is rather regular in *M. luhensis* from the literature reported by Kottelat in 2006).

M. luhensis has two irregular lines on caudal fin membrane, but it is rather regular in *M. luhensis* from the literature reported by Kottelat in 2006).

Microphysogobio luhensis can also be discriminated from two nominal species of *Microphysogobio* known from Vietnam. At the first, it differs from *M. nikolskii* (Dao and Mai, 1959) by having fewer lateral-line scales (37-38 vs. 43). Kottelat (2001b) reported that the taxonomic assignment of *M. vietnamica* Mai, 1978, another nominal species from Vietnam still remains unclear. Nevertheless, *M. luhensis* can be discriminated from *M. vietnamica* by having smaller dorsal fin and longer pectoral fin (versus a dorsal fin reaching backward almost to the anal fin base, and pectoral fin never reach base of pelvic fin in *M. vietnamica*).

Molecular phylogenetic analysis: The code of each species and GenBank accession numbers used in this study were given in table 3. *Carassius auratus langsdorfi* was used as outgroup species. The Cyt b and partial COI sequences from *M. luhensis* and 10 species of *Microphysogobio* were analyzed. A total of 20 haplotypes from 42 individuals for Cyt b gene, and 15 haplotypes from 26 individuals for COI gene were included in this analysis. The length of Cyt b and COI sequence are 1141 bp and 636 bp in total, respectively. The alignment contains 390 and 232 total mutations, and 329 and 177 polymorphic (segregating) sites for Cyt b and COI genes, respectively. The phylogenetic analysis using the Bayesian inference (BI) was provided. The phylogenetic trees were reconstructed by the BI method based on the HKY + G model.

The Cyt b phylogenetic tree (Fig. 5) revealed that *M. luhensis* - *M. kachekensis* - *M. yunnanensis* clade is the earliest offshoot. Out of all taxa, *M. alticorpus* and *M. zhangi* formed respective clades. *M. tafangensis* and *M. chenhsienensis* formed a related sister group, which is sister to *M. brevirostris* - *M. xianyouensis* + *M. elongatus* - *M. fukiensis* clade. Inter-specific nodes between *M. luhensis* and the closely related species *M. kachekensis* and *M. yunnanensis* with high

Table 3. OTU codes, sampling localities and accession numbers of examined *Microphysogobio* species and outgroup for molecular analysis

<table>
<thead>
<tr>
<th>Code</th>
<th>Species</th>
<th>Locality</th>
<th>Cyt b No.</th>
<th>Accession</th>
<th>Source</th>
<th>COI No.</th>
<th>Accession</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALKP1</td>
<td>M. alticorpus</td>
<td>Kaoping River, Pingtung, Taiwan</td>
<td>2</td>
<td>KM999925</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139889</td>
<td>This study</td>
</tr>
<tr>
<td>MBRLK1</td>
<td>M. brevirostris</td>
<td>Keelung River, Taiwan</td>
<td>2</td>
<td>KM999926</td>
<td>Huang et al. 2016</td>
<td>2</td>
<td>MK139899</td>
<td>This study</td>
</tr>
<tr>
<td>MCHOJ1</td>
<td>M. chenhsienensis</td>
<td>Ojio River, youngja, China</td>
<td>1</td>
<td>K075507</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139894</td>
<td>This study</td>
</tr>
<tr>
<td>MCHOJ2</td>
<td>M. chenhsienensis</td>
<td>Ojio River, youngja, China</td>
<td>1</td>
<td>K075508</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139895</td>
<td>This study</td>
</tr>
<tr>
<td>MELQZ1</td>
<td>M. elongatus</td>
<td>Quanzhou City market, China</td>
<td>5</td>
<td>KU356199</td>
<td>Huang et al. 2016</td>
<td>2</td>
<td>MK139892</td>
<td>This study</td>
</tr>
<tr>
<td>MFUJM1</td>
<td>M. fukiensis</td>
<td>Shaoau City market, China</td>
<td>1</td>
<td>KM999927</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139898</td>
<td>This study</td>
</tr>
<tr>
<td>MFUM2</td>
<td>M. fukiensis</td>
<td>Min River, Shaoau City, China</td>
<td>1</td>
<td>KU356199</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139898</td>
<td>This study</td>
</tr>
<tr>
<td>MFUM3</td>
<td>M. fukiensis</td>
<td>Min River, Xinquan, China</td>
<td>1</td>
<td>KM999929</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139898</td>
<td>This study</td>
</tr>
<tr>
<td>MFUL1</td>
<td>M. fukiensis</td>
<td>Pinghe County market, China</td>
<td>2</td>
<td>KT877353</td>
<td>Huang et al. 2016</td>
<td></td>
<td>-</td>
<td>This study</td>
</tr>
<tr>
<td>MKAND1</td>
<td>M. kachekensis</td>
<td>Nandu River, Nankai, China</td>
<td>2</td>
<td>KU356199</td>
<td>Huang et al. 2016</td>
<td>3</td>
<td>MK139899</td>
<td>This study</td>
</tr>
<tr>
<td>MLURJ1</td>
<td>M. luhensis n. sp.</td>
<td>Rongjiang River, China</td>
<td>3</td>
<td>KT877355</td>
<td>This study</td>
<td>3</td>
<td>MK139890</td>
<td>This study</td>
</tr>
<tr>
<td>MTAQ1</td>
<td>M. tafangensis</td>
<td>Changhua Township market, Zhejiang, China</td>
<td>3</td>
<td>KT877355</td>
<td>This study</td>
<td>3</td>
<td>MK139893</td>
<td>This study</td>
</tr>
<tr>
<td>MXML1</td>
<td>M. xianyouensis</td>
<td>Mula River, Xianyou, China</td>
<td>3</td>
<td>KU356199</td>
<td>Huang et al. 2016</td>
<td>2</td>
<td>MK139896</td>
<td>This study</td>
</tr>
<tr>
<td>MYYIY1</td>
<td>M. yunnanensis</td>
<td>Lixian River, Red River, Vietnam</td>
<td>5</td>
<td>KU356195</td>
<td>Huang et al. 2016</td>
<td>1</td>
<td>MK139887</td>
<td>This study</td>
</tr>
<tr>
<td>MZHGC1</td>
<td>M. zhangi</td>
<td>Gengchong County market, Guangxi, China</td>
<td>2</td>
<td>KT877354</td>
<td>Huang et al. 2017</td>
<td>1</td>
<td>MK139888</td>
<td>This study</td>
</tr>
<tr>
<td>MZHGL1</td>
<td>M. zhangi</td>
<td>Guillin City market, Guangxi, China</td>
<td>1</td>
<td>KU356194</td>
<td>Huang et al. 2017</td>
<td>1</td>
<td>MK139887</td>
<td>This study</td>
</tr>
<tr>
<td>MZHGL2</td>
<td>M. zhangi</td>
<td>Guillin City market, Guangxi, China</td>
<td>1</td>
<td>KU356195</td>
<td>Huang et al. 2017</td>
<td>1</td>
<td>MK139885</td>
<td>This study</td>
</tr>
<tr>
<td>MZHQZ1</td>
<td>M. zhangi</td>
<td>Quanzhou County market, Guangxi, China</td>
<td>1</td>
<td>KU356197</td>
<td>Huang et al. 2017</td>
<td>1</td>
<td>MK139886</td>
<td>This study</td>
</tr>
<tr>
<td>MZHQZ2</td>
<td>M. zhangi</td>
<td>Quanzhou County market, Guangxi, China</td>
<td>2</td>
<td>KU356198</td>
<td>Huang et al. 2017</td>
<td>1</td>
<td>MK139886</td>
<td>This study</td>
</tr>
<tr>
<td>CAURA1</td>
<td>C. auratus langsdorfi</td>
<td>Japan</td>
<td>1</td>
<td>NC002079</td>
<td>Murakami et al. 1998</td>
<td>1</td>
<td>NC002079</td>
<td>Murakami et al. 1998</td>
</tr>
</tbody>
</table>
posterior probability reach to 1.00. All inter-specific nodes were supported by high bootstrap values (as high as 0.95-1.00). However, an inter-clades node between two clades (clade *M. brevirostris* + *M. xianyouensis* + *M. elongatus* + *M. fukiensis*, and clade *M. tafangensis* + *M. chenhsienensis*) had a lower posterior probability of 0.67. The genetic distances of relationships among *M. luhensis* and ten valid species of *Microphysogobio* were analyzed based on Kimura 2 parameter model (K2P), ranged from 1.2-16.1% for Cyt b gene, and ranged from 2.9-20.2% for COI gene.

Although the COI phylogenetic tree (Fig. 6) revealed clades different from those on the Cyt b tree, the COI tree also strongly supported that the *M. luhensis* can be discriminated from *M. kachekensis* and *M. yunnanensis*, and that this phylogenetic tree had high posterior probability reaching 1.00.

![Molecular phylogenetic tree of *Microphysogobio luhensis* n. sp. and other comparative materials based on Cyt b sequence reconstructed by Bayesian analysis method (values above the branch: posterior probabilities). The sample size of each haplotype is shown behind the OTU.](image-url)

Fig. 5. Molecular phylogenetic tree of *Microphysogobio luhensis* n. sp. and other comparative materials based on Cyt b sequence reconstructed by Bayesian analysis method (values above the branch: posterior probabilities). The sample size of each haplotype is shown behind the OTU.
DISCUSSION

The specific feature of the lip papillae is considered a diagnostic character for defining the genus *Microphysogobio* and distinguishing it from other related genera under subfamily Gobioninae (Wu 1977). Subsequently, Huang et al. (2017) suggested that feature can not only be used to identify at the inter-generic level, it can also be used for species identification. Recently, Huang et al. (2016) discriminated *M. xianyouensis* from its related species *M. brevirostris* based on the lip feature, this result is also supported by molecular evidence. The morphological feature of lip papillae should be considered as an important diagnostic character to define an independent species.

Genetic divergence was frequently used as good molecular evidence for verifying the validity of new species or reconstructing their phylogenetic relationship (Costagliola et al. 2004; Mukai et al. 2005; Chen et al. 2009). The mitochondrial Cyt b sequences have been applied to identify species of freshwater cyprinids and brackish water gobies, and are regarded as an ideal marker (Jang-Liaw and Chen 2013; Huang et al. 2013; Huang et al. 2017). COI sequences were also used for

![Molecular phylogenetic tree of *Microphysogobio luhensis* n. sp. and other comparative materials based on partial COI sequence reconstructed by Bayesian analysis method (values above the branch: posterior probabilities). The sample size of each haplotype is shown behind the OTU.](image)

© 2018 Academia Sinica, Taiwan
fish species identification (Ward et al. 2005). The present COI tree (Fig. 6) revealed that each species could be well recognized, showing that the validity of *M. luhensis* can be strongly supported by molecular evidence based on both Cyt b and COI genes.

The range of the inter-specific genetic distances of *M. luhensis* and two related species *M. kachekensis* and *M. yunnanensis* are 2.1% and 2.0%, respectively, for Cyt b, and 3.2% and 2.9%, respectively, for COI based on the K2P model. It is clearly higher than the genetic distance between the two valid species *M. fukiensis* and *M. elongatus* (1.4-1.5% for Cyt b, and 1.1% for COI), also higher than its two sister species *M. kachekensis* and *M. yunnanensis* (1.2% for Cyt b, and 0.6% for COI).

Furthermore, the intra-species genetic distance of *M. fukiensis* is from 0.1-0.5% for Cyt b (0.4-0.5% for the cross-river populations); in addition, the genetic distance is from 0.1-0.4% for Cyt b and 0.2-0.5% for COI (cross-river populations were included for those two genes) in *M. zhangi*. These intra-species genetic distances were apparently lower than in the inter-species genetic distances between *M. luhensis*, *M. kachekensis* and *M. yunnanensis*.

Yao and Yang (1977) reported that *M. yunnanensis* is most similar to *M. kachekensis*, but these two species can be separated by the different medial pad size, shorter snout and different color pattern (Yao and Yang 1977). However, this supposition has never been verified by molecular evidence. The present molecular evidence is the first to verify that these two species formed a sister group.

The morphometric differences between *M. yunnanensis* and *M. kachekensis* have been previously mentioned (Yao and Yang 1977); however, none have expounded their morphological differences in detail. Our results revealed that *M. yunnanensis* can be distinguished from *M. kachekensis* by its smaller medial pad (9.3% vs. 10.6% of head length in average, Table 1), shorter snout length (37.8% vs. 44.0% of head length in average, Table 1), and three distinct black crossbars at the posterior section of the body (versus without black crossbars).

CONCLUSIONS

The present morphological and molecular evidence strongly support *Microphysogobio luhensis* n. sp. is an independent and valid species, this new species can be well distinguished from its related species *M. kachekensis* and *M. yunnanensis*. Furthermore, the morphological features of lip papillae, including the type of medial pad, number of small pearl-like papillae on their inside papillae, lip papillae shape, barbel length, and barbel width should be considered as important diagnostic character, these features will be rather beneficial for specific identification of genus *Microphysogobio*.

A diagnostic key to all valid species of *Microphysogobio* from southern mainland China, Hainan Island and Taiwan

1a. Medial pad on lower lip undivided .. 2
1b. Medial pad on lower lip centrally divided 4
2a. Lateral-line scales 34; dorsal fin rather long, reach caudal fin base in mature males *M. tafangensis*
2b. Lateral-line scales more than 36; dorsal fin medium, do not reach caudal fin base in both sexes 3
3a. Dorsal and caudal fin membranes with two rows of black line; posterior lobe short, 46.8-55.4% of eye diameter
.. *M. chenhisenensis*
3b. Dorsal and caudal fin membranes without any black lines; posterior lobe long, 79.4-96.3% of eye diameter
.. *M. exilicauda*
4a. Two-third ventral region of belly naked *M. nudiventris*
4b. Ventral region covered with scales .. 5
5a. Anal fin rays 3, 5 ... 6
5b. Anal fin rays 3, 6 ... 7
6a. Vertebral counts 4 + 30-31; interorbital region with a black crossbar ... *M. zhangi*
6b. Vertebral counts 4 + 34; interorbital region without crossbar *M. tungtingensis*
7a. A ’<’ shaped black mark on the base of the caudal fin
.. *M. xianyouensis*
7a. A circular or rectangular mark on the base of the caudal fin
.. 8
8a. Lateral-line scales 34; pearl papillae of the posterior lobe reduced, posterior tip smoothed *M. microstomus*
8b. Lateral-line scales 35-38; pearl papillae of the posterior lobe well-developed, posterior tip free formed 9
9a. No distinct crossbar present on dorsal side 10
9b. Dorsal side with distinct crossbars .. 11
10a. Pectoral fin rays 1, 12-13; vertebral counts 4 + 33
.. *M. kachekensis*
10b. Pectoral fin rays 1, 11; vertebral counts 4 + 32
.. *M. pseudoelongatus*
11a. The upper nasal region observed as slightly flattened
.. *M. elongatus*
11b. The upper nasal region can be easily observed as recessed .. 12
12a. Medial pad heart shaped ... 13
12b. Medial pad square shaped ... 14
13a. Inside papillae lobes covered with 20-26 well-developed pearl-like papillae; snout length 40.2-45.0% of head length .. *M. luhensis* n. sp.
13b. Inside papillae lobes covered with 30-41 well-developed pearl-like papillae; snout length 36.6-39.0% of head length .. *M. yunnanensis*
Authors’ contributions: SPH conceived the idea, carried out the experiment, and wrote the manuscript with support from ISC, YHZ and KTS. All authors discussed the results and contributed to the final manuscript.

Competing interests: Authors declare that they have no conflict of interest in this study.

Availability of data and materials: All data and materials involved in this paper are available to the readers and sequences were deposited in the GenBank.

Consent for publication: Not applicable.

Ethics approval consent to participate: Not applicable.

REFERENCES

Mai DY. 1978. Identification of the fresh-water fishes of North Viet Nam. Ha Noi, Scientific & Technology Publisher. (in Vietnamese)

Wu HW. 1930. On some fishes collected from the upper Yangtse Valley. Sinensis 1:65-86.

Supplementary Material

Table S1. Other comparative materials.
(download)