
Can Yılmaz¹,²,*, Ayşe Oruç², and Oguz Türkozan³,⁴

¹Vocational School of Health Services, Hakkâri University, Keklikpınar Mahallesi Kampüs Caddesi 30000 Hakkâri, Turkey. *Correspondence: E-mail: canyilmaz@hakkari.edu.tr (Yılmaz)

²WWF Turkey, Buyuk Postane Caddesi No: 19 Kat 5, 34420 Bahcekapi, Eminonu, Istanbul, Turkey. E-mail: aoruc@wwf.org.tr (Oruç)

³Department of Biology, Faculty of Science and Arts, Aydın Adnan Menderes University, 09010 Aydın, Turkey. E-mail: oguz.turkozan@gmail.com (Türkozan)

⁴Cyprus Wildlife Research Institute, Kyrenia, Northern Cyprus, Research Associate, Cyprus

Received 21 February 2022 / Accepted 25 June 2022 / Published 29 September 2022

Communicated by Yoko Nozawa

Data obtained from long-term survey studies are valuable for assessing the population status and trends in critical populations of threatened species, like sea turtles. Akyatan Beach is one of the most important green turtle nesting beaches in the Mediterranean and has been monitored since 2006 without interruption. The beach is 22 km long and more than 100 m wide at some points, and both loggerhead and green turtles nest on the beach. However, loggerhead nesting is very limited compared to green turtles. A total of 3866 *C. mydas* nests were recorded over ten consecutive years at Akyatan Beach, with a mean of 387 ± 127 nests (range = 201–559). The average nesting density was 17.6 nests km⁻¹ (range = 9.1–25.4 nests km⁻¹). In the 3309 nests, a total of 355,259 eggs were counted. The overall mean clutch size was 112 ± 26.10 eggs. Of these eggs, 50.80% hatched (depredated nests included), and 78.07% of them were able to reach the sea. The overall mean hatching success was 73.07 ± 26.20%. The overall mean incubation duration was 51.4 ± 3.5 days. The clutch sizes and hatching success differed between years, and there was a significant decreasing trend in mean incubation duration over the ten years of the study. A total of 1585 green turtle nests (41.02% of nests) were totally or partially depredated by golden jackals and wild boars, while other predators depredated 20.5% of hatchlings. The nesting data obtained since 2006 showed strong annual fluctuations ranging from 170 (in 2007) to 562 (in 2006) with a slightly increasing but statistically insignificant trend (r = 0.94, p > 0.05). The main threats to the population were depredation by jackals and wild boars.

Key words: Endangered species, Conservation, Sea turtles.

BACKGROUND

Sea turtles are migratory species with a complex life history that spend most of their lives in the sea, and only females come to beaches to reproduce. They have different habitats during these complex life cycles. The creation of practical action plans to protect endangered sea turtles will be possible by obtaining detailed information about these different habitats and revealing the connections between these habitats.

In this respect, the Mediterranean is an area containing essential habitats for two species: the green turtle (*Chelonia mydas*) and the loggerhead turtle (*Caretta caretta*). It was defined as a regional
management unit for both species. A total of 17 regional management units (RMUs) were identified for green turtles worldwide, and one of them is the Mediterranean region, which is listed in the “high threats” category (Wallace et al. 2010 2011). Recent studies reveal that the populations of these two species have increased both globally (Mazaris et al. 2017) and regionally (Casale et al. 2018).

The loggerhead and green turtles nesting in the Mediterranean prefer the coasts of Turkey, Greece, Libya, Egypt, and Tunisia as foraging and wintering grounds (Broderick et al. 2007; Casale and Margaritoulis 2010; Godley et al. 2003; Rees et al. 2008; Snape et al. 2016; Stokes et al. 2015). The nesting of green turtles in the Mediterranean is confined to Turkey, Northern Cyprus, Lebanon, Israel, and Egypt (Türkozan and Kaska 2010; Casale et al. 2018), and the average number of documented nests is 1500 nests/year in the Mediterranean (Casale and Margaritoulis 2010). Of the nesting grounds in the Mediterranean, Turkey, and Cyprus comprise almost 99% of the overall nesting activity (Kasperek et al. 2001; Türkozan and Kaska 2010; Casale et al. 2018). Recent studies using mtSTR described 3 to 4 management units for green turtle stocks in the Mediterranean (Tikochinski et al. 2018; Karaman et al. 2022).

Of the 13 major green turtle rookeries in the Mediterranean, six are located on Turkish coasts (Casale et al. 2018), and a total of 452–2051 green turtle nests are estimated annually in Turkey (Türkozan and Kaska 2010). Akyatan Beach has been regularly monitored since 2006, and a -1.2% change was reported in the nest numbers before 1999 and after 2000 monitoring programs (Casale et al. 2018). This decrease is noticeable since other crucial green turtle nesting beaches (Kazanlı and Samandağ, Turkey) provided a 71.4–279.1% increase in nest numbers (Casale et al. 2018). Since Akyatan Beach is a part of a strictly protected area and far from anthropogenic effects, we focused on the long term population parameters to identify possible causes of this decrease. A population size and nest density estimate not based on yearly long-term monitoring studies on nesting beaches may provide misleading results due to biased calculations caused by fluctuations in the number of nests (Sönmez et al. 2021).

We, therefore, offered long-term data and ongoing nesting activities on the beach, which hosts about 20% of the total number of green turtle nests recorded in the Mediterranean.

MATERIALS AND METHODS

Study site

Akyatan Beach is located on the eastern Mediterranean coast of Turkey and within the Wildlife Development Area of 15,304 ha, which has held protection status by the Ministry of Forest and Agriculture since 1987. Akyatan Beach is between Akyatan Lagoon and the Mediterranean and is 22 km long (Fig. 1). Both green and loggerhead turtles nest on Akyatan beach, but green turtle nesting is denser. Conservation studies of sea turtles in Akyatan Beach have been regularly carried out since 2006 according to the protocol signed by the Ministry of Agriculture and Forestry, 7th Regional Directorate of Nature Conservation and National Parks, and WWF-Turkey.

Nesting data

The nesting data for *C. mydas* were collected
over ten nesting seasons (2012–2021) between June 1 and Sept. 15 each year (except for the 2014 and 2015 nesting seasons when the survey started on May 15th). About 14 km of the 22 km beach were monitored daily on foot, and the remaining 8 km were monitored once every three days (Fig. 1).

Adult emergence

The location of clutches within a nest and non-nesting emergences were determined by carefully using a metal rod. The distance of nests and the apex of non-nesting emergences from the sea were measured using a flexible tape measure in cm. All clutch locations were individually marked and recorded with GPS (Garmin Etrex 20), and non-depredated nests were caged with a wire mesh screen (72 × 72 cm, mesh size 9 cm) to prevent nest predation by mammals. Depredated eggs were counted in the nests, moved to another location on the beach, and reburied. Clutches laid in areas at risk of flooding were relocated to a site with lower risk and the same dimensions of the original nest.

Hatchling emergence

The hatchlings reaching the sea were determined daily from hatchling tracks emanating from nests. Counted tracks were obscured by feet to avoid recounting. When the tracks were interrupted by predator tracks, such as golden jackal (*Canis aureus*) or wild boar (*Sus scrofa*) tracks, the hatchlings were assumed to be preyed upon before they reached the sea by those predators. Each nest was excavated carefully, by hand, or using a shovel 3 or 5 days after the first emergence of hatchlings. Nest contents were classified as hatched eggs/empty shells (hatchlings emerged), unhatched eggs (unfertilised eggs and eggs without visible embryos or blood formation), and dead embryos (developmentally delayed eggs, early embryo: embryo < 1 cm; middle embryo: embryo 1–2 cm; late embryo: embryo > 2 cm). The hatching success in the nests was calculated as the percentage of hatched empty shells/the total number of eggs in the entire clutch. Predated nests were not considered for the assessment of hatching success. When fragmented eggshells were found, eggshell pieces were reassembled to represent one egg. Also, incubation duration was defined as the number of days from the nesting date to the date of the first hatchling’s emergence onto the surface of the sand.

Estimates of population sizes

The total number of nesting females was estimated based on clutch frequency (CF) using the clutch frequency of 2.9 (range = 2.0–3.1) for green turtles in the Mediterranean (Broderick et al. 2002), since this information is not available for Akyatan Beach. We considered the remigration interval (RI) as three years for the green turtle populations in the Mediterranean region (Broderick et al. 2002). The total nesting female numbers were calculated with the following formula:

\[
\text{Total Nesting Female Numbers} = \frac{\text{Total Nest Number} \times \text{CF}}{\text{RI}} \times \text{RI}\]

Also, the current female numbers in the last two nesting seasons (2020 and 2021) were calculated with the following formula:

\[
\text{Current Female Numbers} = \frac{\text{Mean Nest Number} \times \text{CF}}{\text{RI}} \times \text{RI}\]

Statistical analysis

The data were not normally distributed according to Levene and Kolmogorov-Smirnov tests \((p < 0.05)\). However, parametric tests could be used based on the central limit theorem regardless of the shape of our data in large sample sizes (Field 2013). We, therefore, used the One-Way ANOVA test to compare mean clutch size, depredated eggs, hatching success, and incubation duration among nesting seasons. The trend analysis for hatching success, incubation duration, and nest numbers across the years was performed by linear regression. All statistical analyses were performed using the IBM SPSS Statistics 20 software. All means are presented with SD (standard deviation).

RESULTS

Nests, eggs, and hatchlings

A total of 10,767 green turtle emergences were recorded, with 3866 (35.91%) clutches being successfully laid during ten consecutive reproduction seasons (2012–2021) on Akyatan Beach. The annual mean number of nests was 387 ± 127 (range = 201–559 nests), and the mean nest density was 17.57 nests km\(^{-1}\) (range = 9.14–25.41 nests km\(^{-1}\)). Due to the risk of inundation of nests by seawater, 42 (1.09%) green turtle nests were relocated.

A total of 355,259 eggs were deposited in 3309 nests (excavated nests), and the mean clutch size excluding predated nests was 112 ± 26.10 eggs (range: 4–222) (Table 1). The clutch sizes were significantly different between the nesting seasons (one-way ANOVA, \(F = 3.105, p < 0.01\)) (Fig. 2a), and the 2012, 2016, 2020, and 2021 nesting seasons had larger mean clutch sizes (see Table 1 for details). Of the 355,259 eggs, 180,421 (50.80%) produced hatchlings, and
140,851 (78.07%) of them were able to reach the sea. When depredated nests were not included, the mean hatching success ranged from 66.53 ± 29.87% to 79.87 ± 21.41%, with an overall mean hatching success of 73.07 ± 26.20% (Table 1). The hatching success was significantly different between the nesting seasons (one-way ANOVA, $F = 5.594$, $p < 0.0001$) (Fig. 2b). The nesting seasons of 2019 and 2020 had lower mean hatching success (see Table 1 for details). The mean hatching success in 10 consecutive years showed a significant decreasing trend ($r^2 = 0.006$, $d.f. = 2164$, $p < 0.0001$) (Fig. 3a). A total of 54,878 dead embryos were counted in 2227 nests, and of these dead embryos, 69.54% (38.162) were early-stage embryos, 7.84% (4.300) were mid-stage embryos and 22.62% (12.416) were late-stage embryos.

Table 1. Biological data about *Chelonia mydas* at Akyatan Beach. Unhatched eggs = eggs without visible embryos or blood formation; developmentally delayed eggs, early embryo = embryo < 1 cm; middle embryo = 1 < embryo < 2 cm; late embryo = embryo > 2 cm.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of nests</td>
<td>444</td>
<td>249</td>
<td>433</td>
<td>201</td>
<td>559</td>
<td>349</td>
</tr>
<tr>
<td>No. of nests depredated</td>
<td>110</td>
<td>82</td>
<td>159</td>
<td>97</td>
<td>270</td>
<td>159</td>
</tr>
<tr>
<td>No. of nests with eggs uncountable due to depredation</td>
<td>64</td>
<td>39</td>
<td>80</td>
<td>29</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>No. of nests left on the beach</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>No. of nests excavated</td>
<td>319</td>
<td>153</td>
<td>259</td>
<td>94</td>
<td>261</td>
<td>178</td>
</tr>
<tr>
<td>No. of nests excavated and eggs countable</td>
<td>365</td>
<td>196</td>
<td>338</td>
<td>162</td>
<td>461</td>
<td>287</td>
</tr>
<tr>
<td>Total number of eggs</td>
<td>40758</td>
<td>20401</td>
<td>35559</td>
<td>16448</td>
<td>48474</td>
<td>29396</td>
</tr>
<tr>
<td>• Unhatched eggs</td>
<td>671</td>
<td>589</td>
<td>884</td>
<td>396</td>
<td>1702</td>
<td>869</td>
</tr>
<tr>
<td>• Early embryo</td>
<td>5430</td>
<td>1807</td>
<td>4016</td>
<td>1327</td>
<td>4608</td>
<td>3221</td>
</tr>
<tr>
<td>• Middle embryo</td>
<td>479</td>
<td>193</td>
<td>612</td>
<td>113</td>
<td>589</td>
<td>289</td>
</tr>
<tr>
<td>• Late embryo</td>
<td>2052</td>
<td>431</td>
<td>999</td>
<td>247</td>
<td>1485</td>
<td>1215</td>
</tr>
<tr>
<td>• Depredated eggs</td>
<td>5150</td>
<td>4104</td>
<td>7438</td>
<td>6435</td>
<td>18914</td>
<td>10401</td>
</tr>
<tr>
<td>• Total number of hatchlings (hatched eggs)</td>
<td>26976</td>
<td>13277</td>
<td>21610</td>
<td>7930</td>
<td>21176</td>
<td>13402</td>
</tr>
<tr>
<td>• Hatchlings depredated</td>
<td>7526</td>
<td>3594</td>
<td>3300</td>
<td>2067</td>
<td>3538</td>
<td>2180</td>
</tr>
<tr>
<td>• Dead hatchlings in nests</td>
<td>305</td>
<td>91</td>
<td>178</td>
<td>103</td>
<td>193</td>
<td>146</td>
</tr>
<tr>
<td>• Hatchlings reached the sea</td>
<td>19145</td>
<td>9592</td>
<td>18132</td>
<td>5760</td>
<td>17445</td>
<td>11076</td>
</tr>
</tbody>
</table>

Mean clutch size (no. of eggs/nest)* | 116.04 ± 26.06 | 108.42 ± 24.71 | 109.05 ± 25.42 | 107.64 ± 22.56 | 113.74 ± 22.92 | 107.60 ± 22.47 |
Mean Hatching success (%)* | 74.09 ± 27.26 | 79.87 ± 21.41 | 76.00 ± 25.50 | 79.41 ± 21.50 | 72.48 ± 21.62 | 71.34 ± 25.65 |
Mean incubation duration (days) | 51.39 ± 2.92 | 51.25 ± 2.38 | 52.19 ± 3.12 | 53.27 ± 2.09 | 50.39 ± 2.75 | 52.38 ± 3.54 |

<table>
<thead>
<tr>
<th>Nesting Seasons</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of nests</td>
<td>341</td>
<td>348</td>
<td>532</td>
<td>410</td>
<td>3866</td>
</tr>
<tr>
<td>No. of nests depredated</td>
<td>130</td>
<td>210</td>
<td>198</td>
<td>131</td>
<td>1546</td>
</tr>
<tr>
<td>No. of nests with eggs uncountable due to depredation</td>
<td>3</td>
<td>27</td>
<td>90</td>
<td>2</td>
<td>454</td>
</tr>
<tr>
<td>No. of nests left on the beach</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>103</td>
</tr>
<tr>
<td>No. of nests excavated</td>
<td>202</td>
<td>148</td>
<td>334</td>
<td>279</td>
<td>2227</td>
</tr>
<tr>
<td>No. of nests excavated and eggs countable</td>
<td>329</td>
<td>321</td>
<td>442</td>
<td>408</td>
<td>3309 %</td>
</tr>
<tr>
<td>Total number of eggs</td>
<td>34925</td>
<td>34234</td>
<td>49982</td>
<td>45082</td>
<td>355259</td>
</tr>
<tr>
<td>Unhatched eggs</td>
<td>1191</td>
<td>754</td>
<td>1516</td>
<td>1312</td>
<td>9884</td>
</tr>
<tr>
<td>Early embryo</td>
<td>2908</td>
<td>2715</td>
<td>7862</td>
<td>4268</td>
<td>38162</td>
</tr>
<tr>
<td>Middle embryo</td>
<td>568</td>
<td>541</td>
<td>514</td>
<td>402</td>
<td>4300</td>
</tr>
<tr>
<td>Late embryo</td>
<td>1664</td>
<td>1119</td>
<td>1786</td>
<td>1418</td>
<td>12416</td>
</tr>
<tr>
<td>Depredated eggs</td>
<td>12581</td>
<td>18188</td>
<td>12974</td>
<td>13890</td>
<td>110075</td>
</tr>
<tr>
<td>Total number of hatchlings (hatched eggs)</td>
<td>16011</td>
<td>10917</td>
<td>25330</td>
<td>23792</td>
<td>180421</td>
</tr>
<tr>
<td>Hatchlings depredated</td>
<td>2169</td>
<td>1292</td>
<td>7026</td>
<td>4357</td>
<td>37049</td>
</tr>
<tr>
<td>Dead hatchlings in nests</td>
<td>132</td>
<td>98</td>
<td>916</td>
<td>359</td>
<td>2521</td>
</tr>
<tr>
<td>Hatchlings reached the sea</td>
<td>13710</td>
<td>9527</td>
<td>17388</td>
<td>19076</td>
<td>140851</td>
</tr>
</tbody>
</table>

Mean clutch size (no. of eggs/nest)* | 110.13 ± 27.50 | 110.63 ± 25.19 | 114.38 ± 32.46 | 113.98 ± 22.83 | 111.93 ± 26.10 |
Mean Hatching success (%)* | 71.34 ± 28.73 | 66.53 ± 29.87 | 67.39 ± 28.28 | 76.36 ± 20.60 | 73.07 ± 26.20 |
Mean incubation duration (days) | 51.41 ± 3.98 | 52.48 ± 3.70 | 51.52 ± 4.64 | 49.61 ± 2.77 | 51.39 ± 3.46 |

* Predated nests were not considered for assessment of mean clutch size and hatching success.
The mean incubation durations ranged from 49.6 \(\pm \) 2.77 to 53.3 \(\pm \) 2.09 days, with an overall mean of 51.4 \(\pm \) 3.46 days (Table 1). The incubation duration was significantly different during the breeding seasons (one-way ANOVA, \(F = 12.960, p < 0.0001 \)) (Fig. 2c). The mean incubation durations in 10 consecutive years showed a significant decreasing trend (regression analysis, \(r^2 = 0.007, d.f. = 1528, p < 0.001 \)) (Fig. 3b).

Three peak nesting periods were recorded according to the temporal distribution of green turtle nests between nesting seasons (Table 2). The first nest was recorded on the 19th of May, while the last nest was recorded on the 23rd of Aug. (Table 2). However, based on ten nesting seasons, the mean peak-nesting season on Akyatan Beach was between the 29th of June and the 8th of July (Fig. 4). Hatching starts during the third week of July (except in 2018, when it started in the first week of July), and there were two different periods for the peak-hatching season among nesting seasons (Table 2). The overall peak-hatching season was in the period of the 10th–19th Aug. (Fig. 5). The average distance of green turtle nests from the tide line was 43.17 \(\pm \) 18.00 m (\(n = 3882, \) range 5.60–125.4; Fig. 6).

A total of 1585 green turtle nests (41.02% of nests) were completely or partially depredated by golden jackals (\textit{Canis aureus}) and wild boars (\textit{Sus scrofa}). Of the 1585 nests, 1204 (75.96%) were depredated by golden jackals and 381 (24.04%) by wild boars. While the number of eggs depredated by golden jackals was counted in most cases, the number of eggs depredated by wild boars could not be counted. A total of 110,075 eggs were destroyed by golden jackals (Table 1). The number of depredated eggs significantly differed between the nesting seasons (one-way ANOVA, \(F = 32.438, p < 0.0001 \)). The depredated eggs in 10 consecutive years showed a significant increasing trend.

![Figure 2](image1.png)
Fig. 2. Interannual variation of green turtle (a) clutch size, (b) hatching success, and (c) incubation duration on Akyatan Beach for 10 years. Shown are medians (horizontal line), interquartile ranges (upper and lower box limits), range (vertical lines), and outliers (circles).

![Figure 3](image2.png)
Fig. 3. Temporal trend in hatching success (a) and incubation durations (b) of green turtle nests over 10 consecutive years on Akyatan Beach.
A total of 37,049 (20.53%) hatchlings were predated on their journey from the nest to the seawater edge (Table 1). Of the predated hatchlings, 36,242 (97.82%) were predated by jackals, 345 (0.93%) by crabs, 45 (0.12%) by seagulls, and 60 (0.16%) by wild boars. The fate of 357 (0.96%) hatchlings that were disoriented and entered the forest is unknown. Furthermore, 2521 (1.40%) hatchlings were found dead in the nests without predation (Table 1).

Nesting trend and abundance

A total of 6034 green turtle nests were recorded during 16 consecutive years (2006–2021), with a mean of 377 ± 127.2 (range = 170–562) nests per year on Akyatan Beach. The number of nests showed a strong annual fluctuation ranging from 170 (in 2007) to 562 nests (in 2006), with a difference of 231% (Table 3). The yearly number of nests across 16 consecutive years showed an insignificant but increasing trend (regression analysis, $r^2 = 0.012$, d.f. = 14, $p > 0.05$) (Fig. 7).

The total number of females nesting each year was estimated as 2081 (range = 1947–3018) (Table 3). The total mean number of females nesting on Akyatan Beach was 390 (range = 365–566). The number of females on Akyatan Beach in 2020–2021 was 487 (range = 456–707). The mean estimated population size (390 females) of nesting females for all years (2006–2021) was lower than for the current year (487 females) (2020–2021).

Threats on the beach

During the research period, 12 green turtles were found stranded on the beach. Furthermore, seven adult green turtles were killed by golden jackals while nesting. Human disturbance on the beach at night was...
low due to its entry restriction its protected status as a Wildlife Development Area. The main anthropogenic threat was caused by several tractors illegally entering the beach, which compacted the sand, affecting hatchling emergence and leaving tracks that trapped hatchlings.

DISCUSSION

Nests, eggs, and hatchlings

Of the 13 major green turtle rookeries in the Mediterranean, six are located in Turkey, and these beaches comprise almost 80% of the overall nesting activity in the Mediterranean (Türkozan and Kaska 2010). The annual mean number of nests on Akyatan Beach (387 nests) constitutes almost 17.51–23.39% of the overall nesting in the Mediterranean, while it comprises 27.4–37.6% of the broad green turtle nesting activity along the Turkish coasts. The annual mean nest number of Akyatan is higher than other nesting colonies in the Mediterranean (see table S11; Casale et al. 2018) and therefore, still the most critical site for green turtles. Long-time surveys indicated a 47% increase in the number of nests laid by Mediterranean green turtle populations (Casale et al. 2018). However, the comparison of average nest numbers obtained due to the monitoring studies carried out before 1999 and the average number of nests in the monitoring studies carried out after 2000 provided a -1.2% change on Akyatan Beach (Casale et al. 2018). In contrast, Kazanli...
and Samandağ nesting beaches (both in Turkey), two other essential nesting grounds in the Mediterranean, showed a remarkable increase (71.4–279.1%) during the same period. The decrease is surprising since Akyatan Beach is a strictly protected area, far from adverse anthropogenic effects. We believe that this could result from the shifting of adult females since the nest site fidelity of green turtles seems to be region specific rather than beach specific (Karaman et al. 2022). The interchange of nesting individuals between Akyatan–Sugözü and Samandağ–Syria was also reported with mark-recapture studies previously (Sönmez et al. 2017). On the other hand, nest numbers showed an increasing trend which is possibly the result of long term conservation efforts in the region.

The overall mean clutch size recorded for Akyatan Beach during ten consecutive reproduction seasons (112 eggs) is within the range for green turtle populations in the Mediterranean (Alagadi/North Cyprus: 116 eggs, Egypt: 101 eggs, Latakia/Syria: 108 eggs, Kazanlı/Turkey: 111 eggs, Akyatan/Turkey: 114 eggs, see table S15; Casale et al. 2018). The clutch size in green turtles increases with the body size of the female (Broderick et al. 2003). Björndal and Carr (1989) indicated that

Fig. 7. Temporal trend in the number of green turtle nests over 16 consecutive years on Akyatan Beach.

Table 3. Number of nests recorded through the years and estimated number of females based on clutch frequency (CF) study in the Mediterranean region according to Broderick et al. (2002) (± SD)

<table>
<thead>
<tr>
<th>Years</th>
<th>Nest number</th>
<th>Estimated number of nesting females (Number nest/CF)</th>
<th>Max (Number nest/CF)</th>
<th>Min (Number nest/CF)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>562</td>
<td>193.8</td>
<td>281.0</td>
<td>181.3</td>
<td>Yılmaz et al. (2015)</td>
</tr>
<tr>
<td>2007</td>
<td>170</td>
<td>58.6</td>
<td>85.0</td>
<td>54.8</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>542</td>
<td>186.9</td>
<td>271.0</td>
<td>174.8</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>261</td>
<td>90.0</td>
<td>130.5</td>
<td>84.2</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>289</td>
<td>99.7</td>
<td>144.5</td>
<td>93.2</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>346</td>
<td>119.3</td>
<td>173.0</td>
<td>111.6</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>444</td>
<td>153.1</td>
<td>222.0</td>
<td>143.2</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>249</td>
<td>85.9</td>
<td>124.5</td>
<td>80.3</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>433</td>
<td>149.3</td>
<td>216.5</td>
<td>139.7</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>201</td>
<td>69.3</td>
<td>100.5</td>
<td>64.8</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>559</td>
<td>192.8</td>
<td>279.5</td>
<td>180.3</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>349</td>
<td>120.3</td>
<td>174.5</td>
<td>112.6</td>
<td>This study</td>
</tr>
<tr>
<td>2018</td>
<td>341</td>
<td>117.6</td>
<td>170.5</td>
<td>110.0</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>348</td>
<td>120.0</td>
<td>174.0</td>
<td>112.3</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>532</td>
<td>183.4</td>
<td>266.0</td>
<td>171.6</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>410</td>
<td>141.4</td>
<td>205.0</td>
<td>132.3</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>6036</td>
<td>2081.4</td>
<td>3018</td>
<td>1947</td>
<td></td>
</tr>
</tbody>
</table>
carapace lengths of females with a small mean clutch size in the 1976 nesting season were significantly shorter than all other years. The current study’s significantly different mean clutch sizes between the nesting seasons may be due to size differences of nesting females during those breeding seasons. However, since we have no measure of female size, we cannot precisely comment on this topic.

Hatching success in our study (73.07%) was higher than Egypt (53.7%) and lower than Alagadi/North Cyprus (84.2%), Latakia/Syria (80.0%), Kazanlı/Turkey (78.3%), Akyatan/Turkey (75.6%) and Samandağ/Turkey (81.1%) (see table S15; Casale et al. 2018). Also, the mean hatching success among the nesting seasons was determined to have significant differences, and showed a crucial decreasing trend over ten consecutive years. Hatching success can be affected by the nest’s location and its microhabitat (Zárate et al. 2013), temperature (Godley et al. 2001; Pike 2013; Hays et al. 2017; Türkozan et al. 2021), fungal infections (Limpus et al. 1983) and moisture (Wood and Bjorndal 2000). The hatching success is reduced when the temperature is higher (Godley et al. 2001; Pike 2013; Hays et al. 2017). Furthermore, Türkozan et al. (2021) reported that hatching success declines after conditions exceed the 33°C thermal thresholds for two-fifths of the incubation period in Akyatan Beach. But the hatching success was increased despite the reduced incubation duration caused by the higher temperature in the 2021 nesting season. The low mean incubation duration in the 2021 nesting season probably resulted from more depredated nests (65.65%) laid until May and June 15th, possibly with a high incubation duration.

Of the recorded embryonic deaths in nests, 69.54% were early-stage, 7.84% were mid-stage, and 22.62% were late-stage embryos. Compared to Yilmaz et al. (2015), while the early-stage embryos in our study were lower, mid-stage and late-stage were higher (early-stage embryos: 76.4%, mid-stage embryos 4.4%, and late-stage embryos: 19.2%). Environmental factors such as precipitation and temperature influence embryonic deaths (Rafferty et al. 2011). Booth and Dunstan (2018) found that the proportion of early embryo death was remarkable in two green turtle nests that experienced the highest nest temperature, lowest oxygen (PO2), and highest carbon dioxide (PCO2) during the first week of incubation. Also, the high temperatures experienced in the early stages of incubation might cause malformations, leading to increased mortality rates (Booth et al. 2020).

The overall mean incubation duration (51.39 ± 3.46) was in the range of values reported for green turtle populations in the Mediterranean (Alagadi/North Cyprus: 51.1 days, Egypt: 46.5 days, Kazanlı/Turkey: 52.2 days, Akyatan/Turkey: 52.9 days, and Samandağ/Turkey: 52.9 days, see table S15; Casale et al. 2018). Also, the incubation duration was determined to be significantly different between the nesting seasons. While variation in incubation durations is related to temperature profiles and sand characteristics on other nesting beaches (Yilmaz et al. 2015), the same nesting beach is affected by the temperature profile in different nesting seasons. Türkozan et al. (2021) found that incubation temperatures will significantly increase in future years in the Mediterranean region. This situation will further reduce the incubation durations of green turtle nests in the Mediterranean. The significant decrease in mean incubation durations over ten consecutive years found in our study supports this conclusion.

The overall peak-nesting season is between 29th June–8th July on Akyatan Beach (Fig. 3), with the first nesting event on 19th May and the last nesting event on 19th May and 8th July on Akyatan Beach (Yilmaz et al. 2015) and 29th June–8th July on Akyatan Beach (Fig. 3). The overall peak-nesting season is between 29th June–8th July on Akyatan Beach (Fig. 3), with the first nesting event on 19th May and the last nesting event on 8th July. Yilmaz et al. (2015) reported that hatching success declined after conditions exceed the 33°C thermal thresholds for two-fifths of the incubation period in Akyatan Beach. But the hatching success was increased despite the reduced incubation duration caused by the higher temperature in the 2021 nesting season. The low mean incubation duration in the 2021 nesting season probably resulted from more depredated nests (65.65%) laid until May and June 15th, possibly with a high incubation duration.

Of the recorded embryonic deaths in nests, 69.54% were early-stage, 7.84% were mid-stage, and 22.62% were late-stage embryos. Compared to Yilmaz et al. (2015), while the early-stage embryos in our study were lower, mid-stage and late-stage were higher (early-stage embryos: 76.4%, mid-stage embryos 4.4%, and late-stage embryos: 19.2%). Environmental factors such as precipitation and temperature influence embryonic deaths (Rafferty et al. 2011). Booth and Dunstan (2018) found that the proportion of early embryo death was remarkable in two green turtle nests that experienced the highest nest temperature, lowest oxygen (PO2), and highest carbon dioxide (PCO2) during the first week of incubation. Also, the high temperatures experienced in the early stages of incubation might cause malformations, leading to increased mortality rates (Booth et al. 2020).

The overall mean incubation duration (51.39 ± 3.46) was in the range of values reported for green turtle populations in the Mediterranean (Alagadi/North Cyprus: 51.1 days, Egypt: 46.5 days, Kazanlı/Turkey: 52.2 days, Akyatan/Turkey: 52.9 days, and Samandağ/Turkey: 52.9 days, see table S15; Casale et al. 2018). Also, the incubation duration was determined to be significantly different between the nesting seasons. While variation in incubation durations is related to temperature profiles and sand characteristics on other nesting beaches (Yilmaz et al. 2015), the same nesting beach is affected by the temperature profile in different nesting seasons. Türkozan et al. (2021) found that incubation temperatures will significantly increase in future years in the Mediterranean region. This situation will further reduce the incubation durations of green turtle nests in the Mediterranean. The significant decrease in mean incubation durations over ten consecutive years found in our study supports this conclusion.

© 2022 Academia Sinica, Taiwan
protection against feral swine (*S. scrofa*) depredation. If other nutrients in the diet of the wild boar (*S. scrofa*) are included in the Wildlife Development Area during the nesting period, then the nest predation will reduce. While 75.96% of depredated nests were predated by golden jackals (*C. aureus*), 24.04% of departed nests were predated by wild boars (*S. scrofa*). Most of the nests depredated by golden jackals (*C. aureus*) were predated before being caged with wire mesh in the morning survey. Brown and Macdonald (1995) reported that 63.8% of green turtle nests were predated by canids (*C. aureus* and *Vulpes vulpes*) on Akyatan Beach. As in the study by Yılmaz et al. (2015), the golden jackal (*C. aureus*) continues to have the highest impact on egg predation at Akyatan Beach.

Nesting trend and abundance

Nest numbers during six consecutive nesting seasons (2006–2011) showed an insignificantly decreasing trend (Yılmaz et al. 2015), while longer-term data (2006–2021) identified an insignificant increasing trend with a mean of 377 nests (Fig. 7). The increasing nesting trend suggests that conservation efforts have been successful. Yılmaz et al. (2015) indicated an increase in green turtle nests in 6 consecutive nesting surveys at Samandağ and Kazanlı beaches. In other studies around the world, while the number of nests over 18 years showed a positive trend for the entire beach at Tortuguero, Costa Rica (Troëng and Rankin 2005), the number of nests over 14 years showed weak negative trends on Misali Island, Pemba (Giorno and Herrmann 2016). Recent studies showed that the Mediterranean and global green turtle populations suggest population increases in some regions (Stokes et al. 2014; Mazaris et al. 2017; Casale et al. 2018). The overall nesting female numbers (2006–2021) are lower than the current season (2020–2021). This discrepancy indicates either that the number of turtles nesting on Akyatan Beach has increased over the years or that the natality rate is higher than the mortality rate. A five consecutive years survey was carried out in 1994 and 1998 on Akyatan Beach for the first time, but nests of green turtles were not caged (Aureggi et al. 2000). In the study carried out in 2002, cages were placed on the nests for the first time (Oruç et al. 2002). A survey has been carried out on Akyatan Beach since 2006 (Yılmaz et al. 2015) and nests that have not undergone predation are caged. The reproductive maturation age of green turtles is estimated to be between 15 to 50 years (Limpus and Walter 1980; Limpus and Chaloupka 1997; Chaloupka et al. 2004; Lemm 2006). From recent surveys, we can deduce that the hatchlings come to Akyatan Beach after reaching sexual maturity. Despite the increase in the number of nesting females, nest numbers had an insignificantly increasing trend. The insignificant increase in nests means the yield for the 16-year consecutive conservation study despite the intensive predation of eggs and hatchlings by mammals on the Akyatan Beach. This shows once again that long-term survey studies are essential.

Threats on the beach

Golden jackals killed seven female green turtles during the 2012 and 2021 nesting seasons. Previous studies recorded the killing of nesting females by golden jackals (Peters and Verhoeven 1992; Akçınar et al. 2006). As in Yilmaz et al. (2015), the main threats were predation of eggs and hatchlings by jackals and eggs by wild boars. Since golden jackals and wild boars are protected as part of the Wildlife Development Area, removal and killing are not an option. In addition to the daytime survey, the night survey can be carried out mainly to prevent adult and nest predation during the nesting period. However, the 22 km long Akyatan Beach can complicate this survey. Providing additional natural nutrients which are included in the diet of golden jackals could reduce the depredation of adults, eggs, and hatchlings.

CONCLUSIONS

In conclusion, Akyatan Beach continues to be essential for the green turtle population in the Mediterranean. The clutch size, hatching success, and incubation duration differ significantly between the nesting seasons. Over ten consecutive years, the mean hatching success and incubation durations showed a significant decreasing trend. The first, last and peak-nesting seasons vary in the same or different populations. The golden jackal (*C. aureus*) predation of eggs continued to have the highest impact. The insignificant increasing trend in the green turtle nests during 16 consecutive surveys showed that conservation efforts were successful despite mammal predation of the nests. As well as the continuation of the surveys for the continuity of the population, studies about how global climate change affects the green turtle will contribute to the conservation biology of Mediterranean turtle populations.

Acknowledgments: The authors would like to thank all the volunteers. This study is part of an ongoing project funded by WWF Turkey through cooperation with the 7th Regional Directorate of Nature Conservation and National Parks of the Turkish
Ministry of Agriculture and Forestry, Adana Office. The authors would like to thank anonymous reviewers and Dr. David Booth for their constructive comments on our MS.

Authors’ contributions: All authors contributed evenly to the study’s design and manuscript writing.

Competing interests: All authors declare that they have no conflict of interest.

Availability of data and materials: Not applicable.

Consent for publication: Not applicable.

Ethics approval consent to participate: Not applicable.

REFERENCES

