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Pung-Pung Hwang (1988) Ultrastructural study on multicellular complex of
chloride cells in teleosts Bull. Inst. Zool., Academia Sinica 27(4): 225-233. Ultrastruc-
ture of chloride cells in branchial region of teleosts, flounder (Kareius bicoloratus),
ayu (Plecoglossus altivelis), carp (Cyprinus carpio), and tilapia (Oreochromis mos-
sambicus) was studied. The chloride cell has an apical membrane in contact directly
with the outer medium. Generally, two or more neighboring chloride cells share
an apical pit, forming a multicellular complex. The chloride cells in a multicellular
complex, differ in their electron density of cytoplasm, development of tubular system
and cell size. According to the depth of junctions at the apices of chloride cells,
there are three types of zonular junction, i.e., tight junction, shallow junction and
leaky junction. Tight junctions occur between neighboring pavement cells or neigh-
boring pavement and chloride cells in both freshwater- and seawater- ddapted fish.
Chloride cells in freshwater-adapted fish link each other with shallow junctions,
whereas chloride cells in seawater- adapted fish form intercellular digitations and
leaky junctions. Muticellular complexes allow chloride cells to .increase additional
paracellular pathways with the shallow and leaky junctions. This junctional differ-
ence of multicellular complexes of chloride cells between freshwater- and seawater-
adapted fish, may be related to the different permeability of ions in the branchial
epithelia of the two groups of fishes.
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ince the pioneering work of Keys and Hootman and Philpott, 1979; Foskett et al.,
Willmer (1932) on the morphology of the 1981).
gill of seawater eel, chloride cells have been Recently, it has been reported that
shown to have an important role in the following seawater adaptation, “accessory

osmoregulation of teleosts. Many aspects
have been concerning about the size and
number of chloride cells, ultrastructure of
mitochondria and tubular system, cytochemi-
stry and enzyme activity of Na-K-ATPase
in chloride cells, and the changes in these
parameters in chloride cells upon seawater
adaptation (Shirai and Utida, 1970; Karnaky

cells” (possibly, an immature chloride cell)
occur beside chloride cells, forming a multi-
cellular complex in the gill, skin and operc-
ulum of teleosts (Karnaky and Kinter, 1977;
Hootman and Philpott, 1979; Sardet et al.,
1979; Foskett ef al., 1981; Hwang and Hirano,
1985; Hwang, 1987). Moreover, it has been
implied that neither accessory cell nor the
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multicellular complex developed in those of
freshwater-adapted fish, i. e, each chloride
cell is surrounded by pavement cells, and
never directly joins with other chloride cells
(Sardet er al., 1979; Karnaky, 1980; Laurent,
1984).

However, in our previous studies, multi-
cellular complexes of chloride cells also
found in the gills or skin of several freshwa-
ter-adapted fishes (Hwang and Hirano, 1985;
Hwang, 1987; Hwang, 1988). In the present
work, four species of teleosts which were
acclimated to freshwater or seawater were
used to examine the ultrastructural differen-
ces of the chloride cells in gills, skin or
operculum, and to discuss their functional
significances.

- MATERIALS AND METHODS

Flounder (Kareius bicoloratus), ayu (Ple-
coglossus altivelis), carp (Cyprinus carpio),
and tilapia (Oreochromis mossambicus) were
used in this study. One-day-old larval floun-
der which hatched from the fertilized eggs
in seawater (339, salinity) were used. Young
flounder were reared in seawater for 60 days
or in freshwater for 6 days. Both young
ayu (3.7-6.2 cm in total length) and tilapia
{3-8 cm in total length) were reared in
freshwater or seawater for over 3-4 months.
Young carp (2.6-3.6 cm in total length) were
reared in freshwater for about 60 days.

Fish were anesthetized with MS222. Gill
arches and operculm were excised (or whole
larva was treated) and immersion-fixed with
mixture of 4% formaldehyde and 5% gluter-
aldehyde in 0.1 M phosphate buffer (pH 7.4)
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at 4°C for 2 h. After a brief rinse in the
buffer solutions, specimens were post-fixed
in 1% osmium tetroxide-phosphate buffer
(pH 7.4) at 4°C for 1.5 h, dehydrated
through a series of graded acetone or ethanol
and embedded either in Epon 812 or in Spurr
resin. Ultra~-thin sections were made by
SORVALL MT-1 or REICHERT-JUNG
ULTRACUT E ultramicrotome with glass
knives, mounted on formvar-coated copper
grids, and double stained with 5-15% uranyl
acetate and lead citrate. The sections were
observed with JEOL JEM-100S or ZEFISS EM
-109 electron microscope.

RESULTS

Basic morphology of chloride cells

In the gills, operculum and skin of the
teleosts adapted to seawater or freshwater,
chloride cells showed the same morphological
characteristics (Figs. 1-8). Chloride cell had
an apical membrane exposing to the outer
medium and its basal membrane directly
contacted with the basal lamina. Mitochon-
dria varied from round or ovid to elongated
in shapes were numerous and distributed
throughout the cytoplasm. Well-branched
tubular system was formed ramifying throu-
ghouti the cytoplasm except the apical region.
However, the cristae in mitochondria and
the tubular system of chloride cells were
more developed in seawater-adapted (Figs.
5-8) fish than in freshwater-adapted fish
(Fig. 1-4). '

Moulticeliular complex of chloride cells
In both freshwater and seawater-adapted

Fig. 1. Ultrastructure of the multicellular complexes of chloride cells (C) in the gill of (Kareius bicolo-

ratus) acclimated to freshwater for 6 days.

tion; M, mitochondria; O, outer medium; P, pavement cell; T, tubular system.

B, basal, lamina; J1, tight junction; J2 shallow junc-

(Abbreviations

are the same in the following Figures). Scale=1 gm.

Fig. 2.
ayu (Plecoglossus altivelis). Scale=1 pm.
Fig. 3.

Ultrastructure of the multicellular complexes of chloride cells in the gill of freshwater-adapted

Ultrastructure of the multicellular complexes of chloride cells in the gill of freshwater-adapted

tilapia (Oreochromis mossambicus). Scale=0.5 gm.
Fig. 4. Ultrastructure of the multicellular complexes of chloride cells in the gill of freshwater carp

(Cyprinus carpio). Scale=1 gym.



MORPHOLOGY OF TELEOST CHLORIDE CELLS 227




228

teleosts, two or more chloride cells frequently
neighbored with each other and shared an
..apical pit, i. e., forming a multicellular com-
- plex of chloride cells (Figs. 1-8). Within a
multicellular complex, these chloride cells
were variable in their ultrastructure, parti-
cularly in the electron density of cytoplasm.
Most of them revealed a cytoplasm of
electron lucent, but some smalier cells mote
electron opacity in the cytoplasm and an
expansion in the diameter of the tubular
system (Figs. 1-8).

In the chloride cells of multicellular
complex and their neighboring pavement
cells, there are three types of zonular junc-
tions, i. e., tight (200-500 nm in depth in
case of tilapia), shallow (70-300'nm in depth)
and leaky (20-40 nm in depth) junctions
(Figs. 1-12). Tight junctions occured betw-
een pavement and pavement cell (Figs. 9
and 11) or between pavement and chloride
cell (Figs. 1, 2, 4-6, and 9-12) in both seaw-
- ater- and freshwatr-adapted fish. The chlo-
ride cells of a multicellular complex in the
seawater-adapted fish extended numerous
cytoplasmic processes (so-called intercellular
digitation) into the apical region of neigh-
boring chloride cells (Figs. 5-10). This
character created many additional contacts
beween extracellular space and outer medium
via leaky junction. On the other hand, the
chloride cells of a multicellular complex in
the freshwater-adapted fish did not form
any intercellular digitation (Figs. 1-4).
Moreover, the depth of the zonular junctions
between neighboring chloride cells was con-
siderable variabe but its depth was still
within a range between tight and leaky
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junctions (Figs. 1-4, 11 and 12).

" DISCUSSION

It had been accepted that multicellular
complex of chloride cells only occured in
seawater-adapted fish (see introduction).
However, the present results indicate that
this structure is generally found not only in
seawater-adapted fish but also in freshwater-
adapted one. In fact, reexamining several
previously published electron micrographs, it
is evident that the multicellular complex of
chloride cells usually appeared in the gills of
freshwater fish, but was overlooked (Fig. 1
of Threadgold and Houston, 1964; Figs. 2 and
16 of Shirai and Utida, 1970; Figs. 9 and 12
of Kikuchi, 1977; Figs. 1 and 2 of Korte,
1979; Fig. 9 of Laurent and Dunel, 1980).

The most obvious differences in the
ultrastructure of chloride cells between sea-
water- and freshwater-adapted fishes are
intercellular organization and junctional stru-
cture, and these appear to reflect the different
functions of the chloride cells in seawater
or freshwater environment.

The positive correlation between the
number of junctional strands and ionic per-
meability has been well established in many
simple epithelia of mammalia and amphibia
(Claude and Goodenough, 1973; Claude, 1978).
In the case of branchial and opercular epith-
elia of the seawater-adapted teleost (Sardet
et al., 1979; Ernst er al., 1980), tight junctions
shared by neighboring pavement cells or
neighboring pavement and chloride cells are
five or more strands extending 300 to 500 nm
in depth. On the other hand, the Ileaky

Fig. 5. Ultrastructure of the multicellular complexes of chloride cells (C) in the operculum of seawater-
adapted flounder (Kareius bicoloratus). B, basal lamina; D, intercellular digitation; JI, tight junc-
tion; J3, leaky junction; M, mitochondria; O, outer medium; P, pavement cell; T, tubular system.

Scale=1 zm.

Fig. 6. Ultrastructure of the multicellular complexes of chloride cells in the gill of seawater-adapted
flounder (Kareius bicoloratus). Scale=1 pm,

Fig. 7. Ultrastructure of the multicellular complexes of chloride cells in the gill of seawater-adapted ayu
(Plecoglossus altivelis). Scale=2 pm.

Fig. 8.

Ultrastructure of the multicellular complexes of chloride cells in the gill of seawater-adapted

tilapia (Oreochromis mossambicus). Scale=2 pm.
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junctions between adjacent chloride cells
(and thus interdigitations) are 1 to 2 strands
with a depth of 20 to 25 nm. That the
junctions béetween pavement cells are much
more electrically tighter than the apical pit
of chloride cells in opercular membrane of
seawater-adapted tilapia is supported by
conductance measurements of the membrane
with a vibrating probe (Foskett and Scheffey,
1982). Furthermore, development of leaky
zonula occludens in seawater-adapted branc-
hial epithelia may provide the morphological
support for the current model, 1. e., sedium
paracellular permeation in NaCl secretion of
chloride cells (Sardet et al., 1979; Ernst et al.,
1980; Hwang and Hirano, 1985; Hwang,
1987; present study).

While in freshwater-adapted fish, recent
studies have indicated the possible role of
chloride cells in. the uptake of sodium and
calcium (Payan et al., 1981; Avella et al,
1987; - Flik er al., 1985; Perry and Wood,
1985):. Multicellular complexes allow chloride
cells of freshwater-adapted to adjoin with
each other and thus to increase the number
of paracellular pathways posscessing zonular
junctions which are shallower than the tight
junctions. These structures may increase
the leakiness of the epithelia to some extent,
and thus may be associated with the ionic
uptake in freshwater-adapted fish (Hwang,
1988).

Leaky junctions occured in seawater-
adapted chloride cells are much shallower
than shallow junctions occured in freshwater-
adapted chloride cells.

tions which only developed in seawater-

" of the epithelia.

Moreover, interdigita-
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adapted chloride cells, increase the number
of leaky junctions, i. e., much more leakiness
Therefore, it can be inferred
that the great difference in ion turnover
rates between freshwater- and seawater-
adapted epithelia are associated with these
ultrastructural differences (Sardet ef al., 1979;
Hwand and Hirano, 1985; Hwang, 1987).

In multicellular complexes of both sea-
water-and freshwater-adapted fishes, some
smaller chloride cells which show more
electron opacity in the cytoplasm and an
expansion in the diameter of the tubular
system, are resemble to “acessory cells”
described previously .(Karanky and Kinter,
1977; Hootman and Philpott, 1979; Hwang
and Hirano, 1985; Hwang, 1987; Hwang,
1988). Whether these cells are identical to
acessory cells or in some physiological rela-
tion with acessory cells, more studies such
as cytochemical examination of Na-K-ATPase
in these cells are necessary, since this enzyme
has been identified to localize in chloride
cell but not in acessory cell (Hootman and
Philpott, 1979).
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Fig. 9. Junctional structure of neighboring chloride cells (C) and pavement cells (P) in the skin of

larval flounder (Kareius bicoloratus) hatched in seawater.

Dfintercellular digitation; JI, tight

junction; J3, leaky junction; O, outer medium. Scale=0.5 pm.

Fig. 10.

Junctional structure of neighboring chloride cells and pavement cells in the gill of seawater-

adapted ayu (Plecoglossus altivelis). Scale=0.5 pm.

Fig. 11.

Junctional structure of neighboring chloride cells and pavement cells in the gill of freshwater-

adapted ayu (Plecoglossus altivelis). J2, shallow junction. Scale=0.5 zm.

Fig. 12.

Junctional structure of neighboring chloride cells and pavement cells in the gill of freshwater-

adapted tilapia (Oreochromis mossambicus). Scale=0.5 pm.
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