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The cone-beam approach is desirable for faster
data collection, higherimage resolution, better radia-
tion utilization and easier hardware implementation,
therefore it attracts more and more attention in bio-
logical, medical and material studies (Smith 1990,
Gulberg 1992, Cheng et al. 1993). Despite important
progress in exact cone-beam reconstruction (Tuy
1983, Smith 1985, Grangeat 1991, Danielsson 1992,
Axelsson and Danielsson 1994), approximate cone-
beam formulas remain practically important.
Feldkamp-type formulas are popular in approximate
cone-beam reconstruction (Feldkamp et al. 1984,
Gullberg 1992, Wangetal. 1991, 1992, 19933, 1993b,
1994).

The advantages of approximate cone-beam re-
construction are as follows. First, incomplete scan-
ning loci can be used. The completeness condition
for exact reconstruction rquires that there exist at
least a source position on any plane intersecting an
object. This condition cannot be satisfied in cone-
beam X-ray microtomography when planaror dashed-
line helical scanning loci are used (Wang et al. 1991,
1939a). Second, partial detection coverage is per-
missible. In exact cone-beam reconstruction, the
cone-beam is assumed to coverthe entire objectfrom
any source position. Unlike emission tomography,
complete detection coverage is impossible in cone-
beam X-ray microtomography, since most speci-
mens are either rod-shaped or planar instead of
spheric. Third, computational efficiency is high. Be-
cause of the second advantage, approximate
reconstruction involves much less raw data, espe-
cially in reconstruction of rod-shaped and planar
specimens. The computational structure of
Feldkamp-type reconstruction is straightforward,
highly parallel, and hardware supported. Feldkamp-
type formulas are particularly fast in reconstructing
a limited number of slices or small regions of inter-
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est. The linogram idea (Edholm and Herman 1987)
used in exact fourier cone-beam reconstruction
(Danielsson 1992, Axelsson and Danielsson 1994)
may also be adapted to Feldkamp-type reconstruc-
tion. Fourth, image noise and ringing artifacts are
less. With the direct Fourier method (Axellson and
Danielsson 1994), it was found that exact cone-
beam reconstruction produces more ringing as
compared to the Feldkamp method. We hypothesize
that this is inherent to all exact cone-beam recon-
struction formulas that take the second derivative
of data. In most of the cone-beam literature synthetic
noise-free data are used, therefore this problem
did not look too serious. Further evaluation and
comparison would be valuable

Feldkamp-type cone-beam formulas were
derived by modifying the convolution and back pro-
jection fan-beam formula. To reconstruct a voxel,
fan-beams tilted horizontally and passing through
the voxel are used. To Compensate for the tilted
fan-beam geometry, both the source-to-origin dis-
tance and the angular differential were modified,
and incremental contributions integrated. In this
paper we will formulate Feldkamp-type reconstruc-
tion in a manner that is clearer in terms of plausibility.

Let theX coordinate system be the cone-beam
reconstruction system, wherex=(x, y, 2)!, (.)!denotes
the transpose of a vector. A specimens (X ) is sup-
ported in the cylindrical region x*+)? < 1. A scanning
locus is described as ¢ (B)=(p(B)cos B, p(B)sing,
(B!, p(B)>1, where f is the X-ray source rotation
angle around the z axis counterclockwise. A
scanning turn is obtained by restricting §in [0, 27).
Cone-beam projection data, R(p, ¢, ), or R( &, B),
are recorded on animaginary detector plane passing
through the z axis and facing the X-ray source, where
p and { are horizontal and longitudinal coordinates
of the detector system, and @=(c, 4, 05, o) specifies
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the direction of an X-ray.

Let us consider § and ¢ functions: (¥ - %)
models a 3-D point object located at ¥, ¢(¥) is
defined as being independent of z, thatis, ¢ (¥ )=c(x,
y).

Longitudinally projecting ¢ (8), e [0, 2r), onto
the z=z, plane. We have another scanning locus:
¢ (B)=(p(BycosB p(Bysinf z)  Be[0,2n). It
can be shown that exact fan-beam data R*(p, 0, )
in the z=z4 plane can be obtained by mulitiplying
a horizontal profile of cone-beam projection R(p, ¢, B)
with the cosine of the X-ray tilting angle,

VPR (B)+p? '
VER(B)+p*+ &

¢ should be the longitudinal coordinate of projected
(% —=,).
Under the moderate conditions we proved a

derivative-free noncircular fan-beam reconstruction
formula (Wang et al. 1993a):

Notethatinthe case of 6( ¥ —% )
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where F(p, B) represents fan-beam data,
=X C0S fB+y sinf and s=-xsinfB+ y cosp,

fis a reconstruction filter. Hence, applying the deriva-
tive-free noncircular fan-beam reconstruc-
tion formula with R*(p, 0, B) will produce exact re-
construction o the z=z, plane.

As & and ¢ functions represent typical cases of
sharp and smooth variation, it is reasonable to apply
the same cone-beam data correction scheme
generally to approximate transaxial fan-beam
data. By doing so, we immediately obtain the
generalized Feldkamp cone-beam reconstruction
formula (Wang et al. 1993b):
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it becomes clear that the essential step in Feldkamp-
type cone-beam reconstruction is to modify cone-
beam projection data so asto achieve exacttransaxial
reconstruction for any & and ¢ functions,. Correction
is done by multiplying cone-beam data with the co-
sine of the X-ray tilting angle. Consequently,
Feldkamp-type reconstruction can be decomposed
into two steps: cone-beam to fan-beam data con-
version and fan-beam reconstruction.

With arguments similar to those described
above, cone-beam reocnstruction can also be
achieved via correcting cone-beam data to fan-
beam data in an inclined plane under the condition
that a projected scanning locus stays outside a
projected specimen support, the projection direction
being defined by the normal of the tilited plane. It
was previously established that the longitudinal
integral of an reconstructed image volume by
Feldkamp-type algorithms is exact (Feldkamp et al.
1984, Wang et al. 1992). We similarly proved that
Feldkamp-type reconstruction with respect to a
tilted longitudinal axis produces the exact 2-D
parallel projection along the tilted longitudinal axis.
This finding updates our earlier result that 2-D
parallel-beam projections can be aproximately
computed from cone-beam data (Lin et al. 1993). In
practice, full 3-D information is often not useful,
several stereo projection image pairs may be
sufficient in some applications. Hence, exact
2-D paraliel-beam projection pairs are the most
desirable.

Our derivative-free noncircular fan-beam for-
mula utilizes full-scan data, which consist of two
complete projection data sets. Actually, fan-beam
reconstruction can also be performed with either
half-scan or double full-scan projection data. Ac-
cordingly, half-scan and double-helix-scan cone-
beam algorithms can be formulated. The above
discussion with one scanning turn can be extended
to half- and double-helix-scan cases, respectively.
With the same progection data correction, exact
transaxial reconstruction can be achieved for

0( % —Xy)and ¢ (¥ ) with half-or double-helix-scan
data. In thu half-scan case, the angular range ini-
volved in a transaxial slice reconstruction is sub-
stantially reduced. As a result, half-scan cone-
beam reconstruction (Wang et al. 1994) may im-
prove longitu dinaltemporal resolution. In the
double-helix-scan case, a transaxial slice is recon-
structed with consine-corrected and linearly com-
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bined projection data from twins of scanning turns.
Double-helix-scan cone-beam reconstruction is
exact for a specimen with linear longitudinal varia-
tion.
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