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Tzong-Der Tzeng and Shean-Va Veh (1999) Permutation tests for difference between two multivariate
allometric patterns. Zoological Studies 38(1): 10-18. Studies that include comparisons of multivariate allometric
patterns between sexes, species, discrete growth stages, or geographic populations have gradually increased.
Some statistical methods assume that compared groups share the same multivariate allometric pattern, so
comparisons of multivariate allometric patterns also have to be performed before using these methods.
Several methods have been used to detect the difference between 2 multivariate allometric patterns, but these
methods lack an objective guide to test whether the 2 multivariate allometric patterns are the same or not. In
this study, a permutation test was used to determine whether the difference of 2 patterns was significant or
not. Four examples were used to explain and verify this test. The multivariate allometric pattern was estimated
by the 1st eigenvector of the sample covariance matrix of the logarithmic measurement. The angle between
the 2 first eigenvectors was taken as the test statistic. For each example, 5000 permutations were performed
to assess the significance level. Finally, the effect of sample size difference on the permutation test was also
examined. We found that all 1st eigenvalues explained the largest part of total variance and all 1st
eigenvectors can satisfactorily interpret the multivariate allometric patterns. These tests can successfully
detect the relationship between 2 multivariate allometric patterns in each example, so they can be a tool to
test whether the difference of 2 multivariate allometric patterns is significant or not. Although this method is
not sensitive to sarnple size differences, we still suggest that the sample size difference be as small as possible
when using permutation tests to address this question.
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Allometry is a method providing valuable
information about evolutionary modifications of
growth trajectories (Cock 1966, Klingenberg 1996).
Studies on allometry trace to the pioneering work of
Huxley (1932). He derived his formula of allometry,
y = b xu, where x and yare trait measurements,
and the constant (J. is often called the allometric
coefficient. Since generalization of allometry was
proposed by Jolicoeur (1963), studies on
multivariate allometric patterns of organisms have
increased. Jolicoeur (1963) suggested that the 1st
eigenvector extracted from the covariance matrix of
logarithmic values reflects the multivariate
allometric pattern. The 1st principal axis is the line
passing through the greatest dimension of the
concentration of data points of the multivariate

-----------------

distribution (Legendre and Legendre 1983), but it
need not represent the size component, except the
coefficients in the 1st principal axis with the same
sign (Jolicoeur and Mosiman 1960). This size
component usually can represent sex, population,
or species differences.

Three different levels of allometry are distin
guished: static, ontogenetic, and evolutionary
allometry. This classification has also been used in
most comparisons between allometric levels (Cock
1966, Klingenberg 1996). Additionally, some
statistical methods, e.g., Burnaby's method
(Burnaby 1966) and shearing principal component
analysis (PCA) for size correction (Humphries et al.
1981) or multiple groups PCA (Thorpe 1983) for
ordination, assume that groups under consideration
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share a common multivariate allometric pattern or
parallel principal axes. Therefore, multivariate
allometric patterns must be compared before using
these methods.

Two methods frequently have been used to
compare 2 multivariate allometric patterns. A
straightforward indication of differences of 2 mul
tivariate allometric patterns is provided by
measurement of the angle between them (Gibson
et al. 1984, Klingenberg 1996). Another method is
based on multivariate ordination (Klingenberg and
Froese 1991, Klingenberg and Spence 1993), e.g.,
PCA.

How far do 2 principal component scores need
to be separated, or how large does the angle
between the 2 first eigenvectors need to be before
the difference of 2 multivariate allometric patterns
is considered to be significant? Clearly, these
methods lack an objective guide to judge whether
2 multivariate allometric patterns are the same or
not. It would be desirable to have a statistical test
for this purpose.

The permutation test involves' determining the
significance level of a test statistic calculated for 2
observed sets of data by comparing the distribution
of values that is generated by randomly reordering
the data (Manly 1997). This is a computer
intensive procedure because the permutation
distribution must be determined either by
enumerating all possible data orders, or by taking
a large random sample from the permutation
distribution.

The aim of this study is to describe a per
mutation procedure to test whether the difference
of 2 multivariate allometric patterns is significant or
not.

MATERIALS AND METHODS

Four examples, including 7 kuruma shrimp
data sets and 1 crab data set, were employed to
explain and verify this test. Each example
comprises 2 data sets. Except the 4th example
which includes both a shrimp data set and a crab
data set, the others contain 2 data sets of kuruma
shrimp only.

The following 12 measurements were used in
the 1st and 2nd examples: (1) antennal spine
Width, denoted ASW; (2) hepatic spine width, HSW;
(3) carapace length, CL; (4) diagonal carapace
length, DCL; (5) 1st abdominal segment length,
FSL; (6) 1st abdominal segment width, FSW; (7)
1st abdominal segment height, FSH; (8) 2nd

abdominal segment length, SSL; (9) 6th abdominal
segment height, SSH; (10) 6th abdominal segment
width, SSW; (11) body length, BL; and (12) total
length, TL. The characters used in the 3rd
example were the same as in the 1st example,
except characters BL and TL were replaced with
body weight (WT) and rostrum length (RL). To
ensure large differences between 2 multivariate
allometric patterns, the characters for the 2 data
sets in the 4th example are different and come
from different species. Four characters measured
in the shrimp data set were WT, ASW, HSW, and
CL, but in the crab data set were: (1) the width of
the posterior region of the carapace, the rear width,
RW; (2) the length of the carapace along the
median line, CLM; (3) the maximum width of the
carapace, CW; and (4) the maximum depth of
body, BD. The sample size, means, and standard
deviations of every character and relative attributes
of the 2 data sets in each example are summarized
in Table 1.

Estimation of multivariate allometric pattern
followed the recommendation of Jolicoeur (1963).
The 1st eigenvector of the sample covariance
matrix calculated from measured values trans
formed to natural logarithms was used to reflect the
multivariate allometric pattern.

The angle between the 2 first eigenvectors
was taken as the test statistic to assess the
significance of difference of the 2 multivariate
allometric patterns. The angle (8) is the arc cosine
of the inner product of the pair of the 1st
eigenvectors, 8 = arccos (b * c) * 18011"[, where b
and c are the 1st eigenvectors (Klingenberg 1996).
If the difference increases, the angle will increase.
Since the orientation of the PCA vector is arbitrary,
the absolute value of the angle computed is used.
The angles can be computed as the arc cosine of
the inner product of the 2 first eigenvectors, but all
possible reflections of axes must be ignored
(Klingenberg 1996).

The permutation test is described in Edgington
(1987), Crowley (1992), Good (1994), and Manly
(1997). In this study, the permutation method
required 2 assumptions: (1) the original samples
were collected randomly, or observations were
independent; and (2) the observations must be
exchangeable among samples.

The null hypothesis that we want to test is that
the 2 first eigenvecters are the same. Suppose
that we have a sample size n1 from data set 1 and
a sample size n2 from data set 2. The following
procedure can be used to assess the significance
of the observed value of the angle estimated from
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the original 2 data sets. The procedure is as
follows:

Step 1. Find the 1st eigenvectors for the 2 original
data sets, and compute the angle between
the 2 first eigenvectors, 80 ,

Step 2. Combine the 2 data sets, and randomly
partition total sample size n1 + n2 into 2
new data sets, of sizes n1 and n2. Find
the 1st eigenvectors for the 2 new
permuted data sets, and recompute the
angle between the 2 new 1st eigenvectors,
81,

Step 3. Repeat step (2) a large number of times
(N) to find a sample distribution of the test
statistic, 81, We chose N = 5000 times.

The significance of 80 can be determined from
its position among the ordered values of 81 found

by permutation (Good 1994, Manly 1997). If 80 is
in the bottom 95% of the permutation distribution,
the test is not significant; but if 80 is among the
values in the top 5% tail of the distribution, then the
test is significant at the 5% significance level.
Similarly, a value in the top 1% tail is significant at
the 1% level. Another way to conclude the per
mutation results involves calculating the proportion
(P) of the observed 81 values that are> 80 , This
P value can be interpreted in the same way as for
conventional tests of significance: if it is < 5% then
this provides some evidence that the null hypo
thesis is not true, and if it is < 1% then it provides
strong evidence that the null hypothesis is not true
(Good 1994, Manly 1997). Because only large
positive values of the test statistic give evidence
against the null hypothesis, a one-sided test is
suitable to test our hypothesis (Crowley 1992).

Table 1. Comparisons of sample size, age group, sampling area, and species for 2 data sets in each
example. YY represtents the same attribute and XY is different. The means and corresponding standard
errors (in parentheses) of variables in each data set are also shown

First example Second example Third example Fourth example

Data set 1 2 1 2 1 2 1 2

Sample size 100 100 130 130 103 120 200 200

Age group yy Xy yy XY

Sample area yy yy Xy Xy

Species yy yy yy XY

Variable Variable Variable

ASW 9.8808182 9.7847706 9.2663014 18.7613014 WT 88.2883495 87.7166667 Kuruma shrimp
(1.0725705) (1.1083576) (0.8349974) (2.1481014) (29.6528620) (20.6161691 )

HSW 11.1252727 11.1287156 10.4179452 22.228082 Rl 24.9163107 24.7725641 WT 11.5557000

(1.3182778) (1.3442119) (0.9726621 ) (2.7633002) (2.3642812) (2.6901610) (3.3540608)

Cl 28.9892727 28.8536697 27.1447945 60.9826027 ASW 18.0985437 18.0128846 ASW 16.0324000
(3.3725159) (3.4377514) (2.5554659) (8.1008562) (2.0272784) (1.2180381 ) (1.7269246)

DCl 32.7263636 32.5806422 30.6796575 67.4136301 HSW 21.3718447 21.3152564 HSW 9.6805000
(3.6953511 ) (3.8313109) (2.8280646) (8.6189155) (2.5922985) (1.7647174) (1.0109117)

FSl 11.8952727 11.6673394 11.0013699 24.2271233 Cl 58.4656311 57.8014103 Cl 10.9260000
(1.4825027) (1.5172579) (1.1320897) (2.7383728) (7.5688945) (4.7291361 ) (1.2027431 )

FSW 12.1338182 12.5924771 11.5887671 24.4244521 DCl 64.7099029 63.9925000
(1.4015385) (1.4119714) (1.0040318) (2.7095833) (8.0478896) (5.0802882)

FSH 13.9104545 14.1233028 13.0531507 30.6702740 FSl 23.3770874 23.4178846 ------ ----------- -- ----- --------

(1.7078799) (1.8401007) (1.2652844) (3.6966398) (2.6321156) (1.7831617) Crab

SSl 9.5242727 9.4918349 8.8774658 19.4906849 FSW 23.5875728 24.5653205
(1.2192617) (1.1821083) (0.8807644) (2.0160055) (2.6172132) (1.7399330) RW 15.5830000

SSH 8.9548182 8.9218349 8.4089041 18.3263014 FSH 29.4966990 29.4222436 (3.4953251 )
(1.0588965) (1.0972028) (0.8480347) (2.1034146) (3.4783187) (2.2908310) ClM 12.7375000

SSW 6.2237273 6.3329358 5.8582192 13.2191781 SSl 18.8809709 18.9713462 (2.5727688)
(0.7795657) (0.7891748) (0.5624610) (1.6343095) (1.8743781 ) (1.4487788) CW 32.1040000

Bl 104.8636364 105.2385321 98.9383562 208.9109589 SSH 17.6811650 17.7494872 (7.1209849)
(11.5452657) (11.3691420) (8.4700060) (23.2693142) (2.0061011 ) (1.1930556) BD 36.4085000

Tl 121.0325455 121.5009174 114.4054110 234.0479452 SSW 12.6883495 12.7308333 (7.8796971 )
(13.0124311 ) (12.9865083) (9.8237414) (24.1524846) (1.5140713) (0.9670120)
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RESULTS

The first three eigenvectors and percentages
of total variances explained by the first three
eigenvalues for each original data set in each
example are shown in Tables 2-5. All 1st eig
envalues explained the largest part of total
variance, and ranged from 83.46% to 96.71%. All
1st eigenvectors have all-positive loadings and are
interpreted as representing multivariate allometric
patterns, while the remaining eigenvectors have
loadings of different signs and are interpreted as
representing shape variation.

The frequency distributions of 5000 81 in the
1st to 4th examples are shown in Fig. 1A-D,
respectively. 80 is 1.675938 degrees in the 1st
example. This angle is a typical value from the
permutation distribution (Fig. 1A), which is in the
bottom 95% of the distribution. The value of P is
55.82%. This value is clearly larger than 1% or
5%, so the test is not significant. Therefore, we
accept the null hypothesis that the 2 multivariate
allometric patterns in the 1st example are the
same.

The value of 80 is 4.821436 degrees in the 2nd
example. This value is extreme in magnitude

Table 2. The first three eigenvectors and percentages of total variances explained by
the first three eigenvalues estimated from the 1st example

Data set 1 Data set 2

The The
Variable 1st 2nd 3rd 1st 2nd 3rd

eigenvector eigenvector

ASW 0.2698565 0.0271609 0.2013917 0.2752837 -0.133152 0.3685506
HSW 0.2912468 -0.054879 0.2226448 0.2958117 -0.072261 0.3418125
CL 0.2900797 0.0242964 0.0343438 0.2926811 -0.055731 0.2930318
DCL 0.2826561 0.0591171 0.0218885 0.2876165 -0.125303 0.2614096
FSL 0.3092059 0.1573005 -0.178208 0.3174445 -0.061021 0.1702709
FSW 0.2779283 -0.398679 -0.034629 0.2682299 0.3961776 -0.061212
FSH 0.3019271 -0.009916 0.1756737 0.3117589 -0.025592 -0.380792
SSL 0.3116326 -0.004306 -0.85951 0.2990123 0.0222653 -0.251484
SSH 0.2784844 0.8202205 0.1068703 0.2892173 -0.717229 -0.435616
SSW 0.303648 -0.277994 -0.010478 0.2971993 0.4667235 -0.390772
BL 0.2743709 -0.180786 0.2073496 0.2624248 0.1918189 0.0468468
TL 0.2686071 -0.160108 0.226079 0.2610896 0.1654335 0.0865297
Variance 94.79% 1.29% 0.86% 96.06% 1.17% 0.57%

Table 3. The first three eigenvectors and percentages of total variances explained by the
first three eigenvalues estimated from the 2nd example

Data set 1 Data set 2

The The
Variable 1st 2nd 3rd 1st 2nd 3rd

eigenvector eigenvector

ASW 0.2824215 -0.109901 0.0097848 0.2800289 0.087132 -0.38575
HSW 0.2921341 -0.003678 0.1539546 0.3055523 0.0061843 -0.15747
CL 0.2977158 -0.065632 -0.025521 0.3296851 -0.017809 -0.309722
DCL 0.2910943 -0.107019 -0.016722 0.3176999 -0.05913 -0.282436
FSL 0.3211295 -0.227199 -0.222397 0.281547 -0.147052 0.1349917
FSW 0.2549327 0.5282522 0.1197418 0.2722359 -0.190878 0.4556241
FSH 0.297535 -0.011709 0.1747953 0.299173 -0.041713 -0.013151
SSL 0.2998281 -0.041368 -0.837271 0.2508687 -0.123676 0.5994495
SSH 0.2943175 -0.632239 0.372086 0.2755315 0.9231491 0.2053641
SSW 0.2891454 0.400221 0.0899792 0.3058012 -0.181732 0.0927947
BL 0.2680211 0.2068443 0.1147153 0.2779161 -0.11782 -0.096781
TL 0.2700429 0.1922016 0.1421035 0.2571109 -0.119789 -0.072263
Variance 92.00% 2.30% 1.18% 96.25% 0.84% 0.69%
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compared with the angles resulting from the 2
permuted data sets (Fig. 1B). The value of P is 0%
and it is smaller than 1% or 5%. It is extremely
unlikely that the difference between the 2
multivariate allometric patterns derived from the 2
original data sets was due to chance alone, so we
accept the alternative hypothesis that the 2
multivariate allometric patterns are different in the
2nd example.

The value of 80 is 3.896844 degrees in the 3rd
example, which is a typical value in the permutation
distribution (Fig. 1C). The value of P is 8.5%, and
it is larger than 1% or 5%. The test is not
significant, so we accept the null hypothesis that
the 2 multivariate allometric patterns are the same
in the 3rd example.

The value of 80 is 28.957391 degrees in the
4th example. This value is extreme in magnitude
compared with the permutation distribution of

the test statistic (Fig. 1D). The value of P is
0%. This value is clearly smaller than 1% or 5%,
so this test is significant. It shows that the 2
multivariate allometric patterns are distinct in the
4th example.

DISCUSSION

The majority variance in each data set is
explained by the 1st eigenvalue (Tables 2-5), which
reveals a good fit of the multivariate allometric
model to the data in all groups considered in this
study (Bjorklund 1993, Klingenberg 1996). The
principal component axes are mutually orthogonal,
and the eigenvectors are normalized to a unit
length, so the coefficients in the eigenvector
depend on the number of variables (Klingenberg
1996). Nevertheless, using the ratio of the

Table 4. The first three eigenvectors and percentages of total variances explained by the
first three eigenvalues estimated from the 3rd example

Data set 1 Data set 2

The The
Variable 1st 2nd 3rd 1st 2nd 3rd

eigenvector eigenvector

WT 0.6670503 -0.03725 -0.443142 0.691987 -0.047839 -0.642155
Rl 0.053559 0.9966586 0.0139096 0.0881021 0.993497 0.0161666
ASW 0.2245822 -0.043902 0.196514 0.1987197 0.0268567 0.1585013
HSW 0.2457084 0.0133774 0.1453544 0.2491708 -0.023898 0.0541738
Cl 0.2637534 0.0010789 0.1738139 0.249691 -0.016486 0.2714069
DCl 0.2530547 0.0032198 0.1332281 0.2422343 -0.015936 0.2713678
FSl 0.2306686 -0.031648 -0.012182 0.2266762 -0.050409 0.3530372
FSW 0.2243608 -0.0047 -0.169052 0.2110283 -0.030384 -0.055397
FSH 0.240059 -0.001328 0.0785836 0.2365601 -0.017968 0.1774074
SSl 0.1989035 0.003359 -0.032609 0.2223817 -0.049743 0.366809
SSH 0.2208158 -0.033631 0.8098673 0.1900293 -0.005115 0.3423953
SSW 0.241385 -0.031597 -0.062244 0.2309825 -0.050689 0.0324765
Variance 93.57% 3.49% 0.79% 83.46% 11.29% 1.64%

Table 5. The first three eigenvectors and percentages of total variances explained by the first
three eigenvalues estimated from the 4th example

Data set 1 Data set 2

The The
1st 2nd 3rd 1st 2nd 3rd

Variable eigenvector Variable eigenvector

WT 0.8674172 -0.383448 -0.314919 RW 0.5188255 -0.203503 -0.797001
ASW 0.2715453 0.8973357 -0.347236 ClM 0.4484576 0.8898273 0.0436979
HSW 0.2855215 0.1806692 0.647113 CW 0.521372 -0.334108 0.2031651
Cl 0.3038553 0.1229433 0.6012467 BD 0.507816 -0.234873 0.5671014
Variance 95.86% 2.87% 0.96% 96.71% 2.40% 0.83%
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coefficients of the 1st eigenvector for 2 variables
corresponding to the variable in the bivariate
allometric analysis, we can translate the
multivariate allometric coefficients to bivariate
allometric coefficients (Huxley's ex) (Jolicoeur 1963,
Shea 1985).

The multivariate allometric coefficients in the
1st and 2nd examples have similar magnitudes
(Tables 2, 3). Thus, in allometric plots with TL as
the independent variable, all the other variables
would be isometric with a slope of about 1. The
variable of body weight (WT) was also included
and analyzed in the 3rd example, and in the 1st
data set of the 4th example; the coefficients of WT

are about 3 times those of the other variables in
magnitude, except RL (Tables 4, 5). The co
efficients of RL in the 3rd example are clearly
smaller than the other coefficients (Table 4), so we
may say the correlations between RL and the
remaining variables are small. The relationships
between TL, WT, or RL and the other variables
have been proven by many shrimp studies (Chu et
al. 1995, Chiu 1996) and our studies (data not
shown). Therefore, all the 1st eigenvectors
estimated in this study can satisfactorily reflect the
multivariate allometric patterns of organisms.

For some statistics we are not able to know
their distribution since they are not standard test
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Fig. 1. Frequency distribution of 5000 angles (81) estimated from the 2 data sets permuted in each example: (A) 1st example, (B)
2nd example, (C) 3rd example, (D) 4th example. 80 stands for the angle between the 2 first eigenvectors estimated from the original
2 data sets. P is the proportion of 81 larger than 80 among 5000 permutations.



16 Zoological Studies 38(1): 10-18 (1999)

statistics; therefore standard parametric methods
can not be applied. Non-parametric methods, like
the permutation test, can be used to solve such
problems. Additionally, permutation tests can more
easily take into account the peculiarities of the
situation of interest and use non-standard test
statistics than can standard statistical tests (Manly
1997). They are usually almost as powerful as the
corresponding unbiased parametric tests even for
small samples (Edgington 1987). The major
reason permutation tests have been applied to
various fields is that hey only require 1 or 2
relatively weak assumptions (Good 1994).

For determining the exact level of significance
and the real permutation distribution of a test
statistic, all possible permutations of the
observations must be listed and the test statistic
computed for each permutation (Good 1994).
However, sometimes the large number of possible

data permutations makes a complete enumeration
extremely difficult or computationally unfeasible. In
that case, the permutation distribution of the test
statistic can be estimated by considering a larger
number of random permutations of observations,
and this test is described as a sampled permutation
test or approximate randomization test (Noreen
1989). The significance level of taking a large
sample from the complete permutation distribution
can be expected to give the same result gained
from a complete enumeration (Manly 1997).
However, it is important that the significance level
estimated from permutations be close to the level
that would be obtained from considering all
possible data rearrangements (Solow 1990).
Therefore, a certain minimum number of
permutations should be performed. Marriott (1979)
and Edgington (1987) suggested that 1000 per
mutations are a reasonable minimum for a test at

Table. 6. Means, standard deviations, and ranges of 5000 81 values and numbers (N) and proportions
(P) of 81 larger than 80 among 5000 permutations for various data dimensions expected with the same
multivariate allometric patterns. 80 is the angle derived from the 2 data sets before permuting. 81 is the
angle estimated from the 2 permuted data sets

Sample size Number of 81 80 N P

n1 n2 permutations Mean Std. Dev. Minimum Maximum

200 30 5000 2.8023950 0.8251290 0.8780792 7.3065774 2.67171 2520 50.4%
200 40 5000 2.4080969 0.6693691 0.5875269 5.1949542 2.60687 1782 35.64%
200 50 5000 2.1502399 0.6099446 0.5055280 5.7594434 3.07310 354 7.08%
200 60 5000 1.9375528 0.5347191 0.5683803 5.1075401 1.54437 3789 75.75%
200 70 5000 1.8655150 0.5045791 0.5650887 4.2896967 0.95099 4915 98.3%
200 80 5000 1.7096402 0.4511045 0.4446091 3.8985048 1.39534 3719 74.38%
200 90 5000 1.5700116 0.4130168 0.5190032 3.5378335 1.15916 4212 84.24%
200 100 5000 1.3003858 0.3462046 0.3937044 3.0201632 0.85849 4546 90.92%
200 150 5000 1.1906324 0.3308836 0.3985607 2.5360473 1.22607 2110 42.2%

Table. 7. Means, standard deviations, and ranges of 5000 81 values and numbers (N) and
proportions (P) of 81 larger than 80 among 5000 permutations for various data dimensions expected
with 2 different multivariate allometric patterns. 80 is the angle derived from the 2 data sets before
permuting. 81 is the angle derived from the 2 permuted data sets

Sample Size Number of 81 80 N P

n1 n2 permutations Mean Std. Dev. Minimum Maximum

200 30 5000 13.4104259 11.1472425 0.1140383 44.8392150 52.52610 0 0%
200 40 5000 13.0637343 10.1847369 0.1712086 49.6559040 50.48860 0 0%
200 50 5000 6.5047684 5.9651623 0.1063969 49.8005490 53.03401 0 0%
200 60 5000 4.5638548 3.4541577 0.0923533 47.4963080 49.90202 0 0%
200 70 5000 4.9087284 3.6814842 0.0453292 46.0601290 56.15404 0 0%
200 80 5000 4.0518363 2.7980301 0.1462960 27.2607240 53.51972 0 0%
200 90 5000 3.1107067 2.0321123 0.0550736 17.3698500 52.52478 0 0%
200 100 5000 2.3771073 1.4812705 0.0362931 9.5908504 53.82837 0 0%
200 150 5000 2.0969540 1.2784028 0.0483770 7.8940469 52.01624 0 0%
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the 5% level of significance, while 5000 are a
reasonable minimum at the 1% level. In general,
the larger the sample size is, the more permu
tations need. When the sample size is small, the
number of permutations used should not exceed
the maximum possible orders for the data.

The permutation tests showed that the 2 mul
tivariate allometric patterns in the 1st example are
the same. That is because the 2 data sets have
the same data characteristics. Although the 2 data
sets in the 3rd example come from different fishing
areas, the 2 multivariate allometric patterns show
no significant different. That may be because the
2 data sets have a similar age composition and
share the same gene pool. Two different multi
variate allometric patterns were expected in the
2nd and 4th examples, the growth rate in younger
organisms is faster than that in older groups, and
the 2 data sets come from different species,
respectively. We also found that the frequency
distributions of 5000 81 values in the 1st to the 4th
examples were not centered on the theoretical
value (0 degrees) (Fig. 1). That may have resulted
from sampling error in the process of permutation.

The permutation test is relatively sensitive to
sample size differences in some studies (Romano
1989, Crowley 1992, Hudson et al. 1992). Two
cases which separately have 9 data dimensions of
200 x 30, 200 x 40, 200 x 50, 200 x 60, 200 x 70,
200 x 80, 200 x 90, 200 x 100, and 200 x 150 were
generated to investigate this effect. The
observations in the 1st example in this study were
combined as the reference data set and the 1st
data set (with 200 observations), and then we
randomly generated the corresponding size (30,
40, 50, 60, 70, 80, 90, 100, and 150) from the
reference data set as the 2nd data set. We also
took the shrimp data set in the 4th example as the
1st data set (with 200 observations); but the crab
data set was used as the reference data set to
generate the 2nd data set of corresponding size.
These 2 cases have different allometric
characteristics: the 1st one was expected to have
the same multivariate allometric patterns, while the
2nd was expected to have different allometric
patterns.

Permutation tests were performed using 9 data
dimensions in each case. These results are shown
in Tables 6 and 7, respectively. All permutation
tests of the 9 data dimensions in the 1st case were
not significant (Table 6). This indicates that the 2
multivariate allometric patterns derived from each
data dimension are the same. All permutation tests
of the 9 data dimensions in the 2nd case were

significant. This indicates that the 2 multivariate
allometric patterns derived from each data
dimension are different. Therefore, the permu
tation test may be not sensitive to sample size
differences. However, the value of P is not very
stable (Table 6), so we suggest that the sample
size difference be as small as possible when using
permutation tests to address this question.
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利用置換排列法檢定兩多變量異速成長型式間之差異

曾宗德 1 葉顯椏 1

研究不同性別、不同種、同種不同成長階段或不同地理族群間之多變量異速成長的比較漸漸增加。某些

多變量統計方法假設被分析的各自干具有相同之異速成長型態。因此在無險視或比較各群之異速成長型式是否相

同前，不應使用這類之方法。目前已有多個方法被使用來比較兩異速成長型式間之關係，但這些方法皆缺少

客觀之理論判定兩多變量異速成長型式是否相同或相異。本研究引用置換排列法以檢定兩多變量異速成長形式

間之差要是否具有統計之顯著性，並引用四個例子加以解釋及測試本法之能力。多變量異速成長型式係以變數

經對數轉換後之共變方矩陣為資料，再以主成份分析所得之第一特徵向量估計而得。利用兩第一王成份向量間

之角度，當險定的統計值。每一例子，執行 5000次之隨機排列分析，藉以評估其顯著水準。最後並樣驗兩樣本

數且間之差異是否宮對此方法造成影響。結果顯示，第主成份特 f~日值皆能解釋絕大部分的變要;第主成份

向量亦皆能充分描述其多變量要速成長型式。四個例子中，不論要速成長型式是相同或有差異皆可被本法成功

測出。因此，重複排列分析;主可客觀之判定兩多變量異速成長形式差異之顯著性。雖然此方法對標本數目間之

差異並不敏感，但我們仍建議當使用這方法時，儘量將兩樣本獸的差要減至最小。

關鍵詞:第一主成份向量，角度，異速成長，重新排列。
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