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Laurent Seuront, François G. Schmitt, Mathew C. Brewer, J. Rudi Strickler and Sami Souissi (2004)
From random walk to multifractal random walk in zooplankton swimming behavior.  Zoological Studies 43(2):
498-510.  Herein, we investigate the statistical properties of the swimming behavior of two of the most common
freshwater and marine zooplankters, the cladoceran, Daphnia pulex, and the copepod, Temora longicornis.
Both species undergo a very structured type of trajectory, with successive moves displaying intermittent ampli-
tudes.  We present an original statistical procedure, derived from the fields of turbulence and anomalous diffu-
sion and specifically devoted to the characterization of intermittent patterns.  We then show that the swimming
paths belong to“multifractal random walks”, characterized by a nonlinear moment scaling function for distance
versus time.  This clearly differs from the traditional Brownian and fractional Brownian walks expected or previ-
ously detected in animal behaviors.  More specifically, we have identified differential behaviors in the horizontal
and vertical planes.  This suggests the existence of reminiscence of diel vertical migration as a predator-avoid-
ance strategy or differential swimming behaviors related to mating, feeding, or predator-avoidance strategies.
We also compare the structure of the swimming paths to the multifractal behavior of microscale phytoplankton
distributions demonstrated in turbulent environments, and briefly discuss the potential causes of the observed
differences between D. pulex and T. longicornis swimming behaviors.  
http://www.sinica.edu.tw/zool/zoolstud/43.2/498.pdf
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Animals typically search for food, hosts, and
sexual partners and avoid predators in complex,
spatially and temporally structured environments.
In zooplankton ecology, examples come from a
wide spectrum of swimming behaviors related to
the species, age, prey density, presence of a
predator or conspecific, sex of individuals, and
information imparted into the surrounding water by
a swimming animal, including both chemical and
hydromechanical stimuli.  Moreover, environmen-
tal complexity affects the movement patterns of
animals; recent advances have demonstrated the
heterogeneous nature of physical and biological

patterns and processes at scales relevant to indi-
vidual organisms (Seuront et al. 1996a b 1999
2002, Cowles et al. 1998, Seymour et al. 2000,
Waters and Mitchell 2002, Waters et al. 2003).
There is thus a genuine need to establish a refer-
ence framework that links pure behavioral obser-
vations, the qualitative and quantitative nature of
environment complexity, and zooplankton tropho-
dynamic hypotheses.  

This reference framework could be provided
by fractal analysis that recently has been proven
to overcome the major limitations of most behav-
ioral metrics which are intrinsically scale-depen-
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dent (see Seuront et al. 2004 for a review on the
subject).  Fractal analysis has thus been success-
fully applied to a wide range of animal behaviors,
ranging from movements of marine (Erlandson and
Kostylev 1995) and terrestrial (Gautestad and
Mysterud, 1993, Wiens et al. 1995) invertebrates,
swimming paths of both freshwater and marine
zooplankton (Coughlin et al. 1992, Bundy et al.
1993, Brewer 1996, Jonsson and Johansson 1997,
Dowling et al. 2000, Seuront et al. 2004), and
search paths of small (Cody 1971, Pyke 1981) and
large (Van Ballenberghe 1983, Bascompte and
Vilà 1997, Mouillot and Viale 2001) terrestrial and
marine vertebrates.  

The result ing (fractal) properties, often
referred to as Brownian (random) motion (i.e.,
when the fractal dimension D equals the dimen-
sion of the embedding space d) and fractional
Brownian motion (i.e., when D < d), and the relat-
ed framework proposed to simulate zooplankton
swimming behavior are implicitly based on a
Gaussian distribution of the spatial increments of
the trajectory (e.g., see Peitgen et al. 1992).  This
hypothesis, however, is untenable considering the
highly intermittent character of distances traveled
by zooplankton organisms (Fig. 1).  Such distribu-
tions are characterized by a few dense values and
a wide range of low-density values that highly sig-
nif icantly diverge from normality (by the
Kolmogorov-Smirnov test, p < 0.001).  Schmitt and
Seuront (2001 2002) thus recently demonstrated
that the norm of copepod displacements should
rather be thought of as a multifractal random walk
or multifractal anomalous diffusion, and subse-
quently introduced a new type of stochastic
process reproducing these multifractal scaling
properties.  

In this paper, in order to illustrate the chal-
lenging difficulty in obtaining accurate records of
the 3-dimensional (3D) displacement of aquatic
organisms, we first briefly present 2 different, but
conceptually similar, methods that permit the col-
lection of 3D swimming data at both high spatial
and temporal resolution and for long periods.  We
subsequently focus on the stochastic methods
devoted to the identification and characterization of
multifractal anomalous diffusion.  Further, to put
the concepts developed in this paper in an ecologi-
cal context, they are applied to a set of high-reso-
lution 3D swimming trajectories of two of the most
common freshwater and marine zooplankters, the
cladoceran, Daphnia pulex, and the copepod,
Temora longicornis.  We first characterize the mul-
tifractal structure of the 3D swimming paths of T.

longicornis and D. pulex, then compare their prop-
erties.  We further analyze the properties of the 2D
projections of the 3D swimming paths to ensure
the isotropy of the swimming behaviors of T. longi-
cornis and D. pulex.  

Fig. 1. Examples of distance traveled by Temora longicornis
(12.5-Hz resolution; A) and Daphnia pulex (10-Hz resolution;
B), compared to the distance traveled in the case of pure ran-
dom motion (C).
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MATERIALS AND METHODS

Living material collection and acclimation

Daphnia pulex
A clone of Daphnia pulex was cultured in

aged tap water under cool white fluorescent bulbs,
in a 16:8-h light-dark cycle.  Cultures were main-
tained at the experimental temperature and fed
every day with a 1:1 mixture of the green algae,
Ankistrodesmus sp. and Scenedesmus sp., at a
final concentration of about 5 x 105 cells/ml.  Algae
were grown in multiple 250 ml batch cultures under
cool white fluorescent bulbs, in an 18:6-h light-dark
cycle at 20°C in Bold

,
s basal medium.  

All recording experiments were carried out
with animals swimming in an algal concentration of
5 x 104 cells/ml, which is an intermediate food con-
centration, well below D. pulex

,
s incipient limiting

concentration (Lampert 1987).  The test chamber
was illuminated with a diffuse, fiberoptic light
placed 0.5 m directly overhead that resulted in an
illumination of about 12 µE/m2/s in the vessel,
approximately equal to full daylight.  At least 1 h
prior to the experiments, adult, gravid females ( 2.1
± 0.2 mm) were transferred from their culturing
vessels and acclimated to experimental light and
food conditions in holding vessels.  A single animal
was then transferred from its holding vessel to the
recording chamber with a large-bore pipette and
allowed to acclimate for at least 10 min before
recording began.  

Temora longicornis
Individuals of the copepod, Temora longicor-

nis, were collected with a WP2 net (200-mesh
size) in offshore surface waters of the Eastern
English Channel.  Specimens were diluted in buck-
ets using in situ water and transported to the labo-
ratory.  Acclimation of copepods consisted of
being held in 20-L beakers filled with 0.45-µm-fil-
tered seawater to which was added a suspension
of the diatom, Skeletonema costatum, to a final
concentration of 108 cells/l.  Algae were grown in
multiple 1-L batch cultures under cool fluorescent
bulbs, in a 12:12-h light-dark cycle at 18°C in f/2
medium.  

Prior to the filming experiment, adult females
(1.1 ± 0.1 mm) were sorted by pipette, acclimated
for 24 h at 18°C and fed on a mixture of the green
alga, Nannochloropsis occulata (3 µm), and the
flagellate, Oxyrrhis marina (13 µm).  The larger
heterotrophic flagellate, O. marina, was present as
an additional food source.  Illumination came from

two 75-W lamps (providing diffuse cold light) locat-
ed above and below the container to ensure homo-
geneity of the light source and thus avoid phototro-
pism.  The illumination system was designed to
provide a light intensity of around 10 µE/m2/s in
the vessel to be consistent with the Daphnia
experiment.  A single animal was sorted by pipette
and left in the experimental filming setup to accli-
matize for 15 min.  

Recording the 3D behavior of swimming organ-
isms

Daphnia pulex
All paths studied in this paper were move-

ments of solitary D. pulex swimming in the 5-L (18
x 18 x 15.5 cm) Plexiglas recording vessel of the
CritterSpy, a high-resolution 3D recording system.
The CritterSpy uses a schleiren optical system
consisting of a collimated red laser beam (λ = 623
nm) which serves as the light source for 2 orthogo-
nally mounted video cameras, 2 frame number
generators, two 50.8 cm (20-in) video monitors,
and 2 VHS videocassette recorders (see Strickler
1985 and Bundy et al. 1993 for further details).
This system simultaneously records orthogonal
front (XZ) and side (YZ) views of the experimental
chamber as dark-field images.  To run the system,
2 operators view the camera images in real time.
As the animal swims away from the center of
either camera

,
s view (marked with crosshairs on

the monitors), 1 operator uses a trackball (X and Z
dimensions) and the other a rotating cylinder (Y
dimension) to bring the animal back into the center
of both views.  The actual re-centering of the
image was achieved via 3 computer-controlled lin-
ear positioning motors (1 for each axis), that
moved the entire optical system in response to the
operators

,
input.  A computer recorded the motor

movements necessary to keep the animal cen-
tered in the 2 views as X, Y, and Z coordinates.
Because the computer only recorded coordinates
when the trackball or cylinder was moved, the
coordinates were recorded at an uneven sampling
rate (ranging from about 5 to 15 Hz).  Paths were
then interpolated to produce an even time interval
(10 Hz) between successive position measure-
ments.  The 10 Hz rate is fast enough so that coor-
dinates recorded at that temporal scale are the
result of very small movements of the crosshairs
corresponding to Daphnia

,
s characteristic hop-

and-sink behavior.  
Each individual Daphnia was recorded swim-

ming for at least 30 min, after which the videotapes
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were reviewed and valid segments were identified
for analysis.  Valid segments consisted of video in
which an animal was swimming freely, at least 2
body lengths away from any of the chamber

,
s

walls or the surface of the water, and the animals
were always within 1/2 body length of the
crosshairs in the center of the video monitors.  To
ensure that there was a significant range of scales
in each path, we only used paths that were at least
30 s in duration.  After identifying valid sequences,
the frame numbers imprinted on the video were
used to isolate the corresponding time interval
from the 3D coordinate data stored on the comput-
er.  These time series of coordinates are the 3D
trajectories used in our analysis (Fig. 2, Table 1).  

Temora longicornis
All paths considered here are the movements

of solitary T. longicornis swimming in a 3.375-L (15
x 15 x 15 cm) glass recording vessel.  The 3D tra-
jectory of the copepod was recorded at a rate of
12.5 frames/s using 2 orthogonally focused and
synchronized CCD black and white cameras
(Hitachi KP M1, Japan; 875 x 560 pixels; focal dis-
tance, 17:53 mm), facing the front and side views
of the experimental container.  An encoder, RGB-
PAL (Enc110 (For-A)), codes PAL-type red and
green frames from the 2 instantaneous synchro-
nized monochrome images.  Each orthogonal view
is then labeled and may be added to another at the

same time, t, to form 1 single color PAL-frame (see
Schmitt and Seuront 2001 2002 for further details).
The advantages of this frame superposition are to
decrease hardware costs and to ensure optimal
synchronization.  The colored images were subse-
quently digitized (720 x 576 pixels), compressed,
and stored in real time using a special acquisition
card and appropriate software (PVR-Digital
Processing Systems, USA) on a PC.  The 3 com-
ponents of the copepod trajectory were finally
extracted using frame analysis, and stored.  One
should note here that this procedure allows the
recording of the coordinates at an even sampling
rate (12.5 Hz) that implies no interpolation, and
only requires 1 operator.  Moreover, no VHS video-
cassette recorder is necessary, and only 1 video
monitor is sufficient to visualize the 2 orthogonal
views.  

Each individual Temora was recorded swim-
ming for 40 min (the maximum memory size
allowed by our frame-disk), after which valid seg-
ments were identified for analysis.  Here, valid
segments consisted of pathways in which the ani-
mals were swimming freely, at least 2 body lengths
away from any of the chamber

,
s walls or the sur-

face of the water.  An illustration of the resulting 3D
trajectories is given in fig. 3 (see also Table 1).  

Statistical study of zooplankton displacements

Background
We note here that X(t) is the 3D position of

the zooplankter at time, t.  Now we consider the
norm ∆Xτ of its displacements as:

∆Xτ = (x(t+τ)-x(t))2+(y(t+τ)-y(t))2+(z(t+τ)-

z(t))2 1/2， (1)

where τ is the time increment (i.e., the time scale
at which the norm is estimated), and , x(t),y(t), and
z(t) are the 3D coordinates of the zooplankter at
time, t.  By definition, and as recently illustrated on
a set of different behavioral metrics including the
distance traveled and the turning angle (Seuront et
al. 2004), the norm of the displacements,∆Xτ, is
scale-dependent.  Mathematically, this is called a
nonstationary process with stationary increments:
the statistics of the increment do not depend on
time, t, but only on the time increment, τ.  More
generally, the moments of order q (q > 0 the
moments of orders 1 and 2 are the mean and the
variance, respectively) can thus be regarded as
depending only of the time increment, τ, following

Table 1. Code, duration, and number of data
points available from each of the 9 and 14 swim-
ming paths of Daphnia pulex and Temora longicor-
nis analyzed, respectively

Daphnia pulex Temora longicornis

Path N Duration Path N Duration

Dp1 864 1 mn 26 s Tl1 3022 4 mn 18 s
Dp2 2413 4 mn 01 s Tl2 3130 4 mn 10 s
Dp3 1892 3 mn 09 s Tl3 2531 3 mn 22 s
Dp4 1785 2 mn 58 s Tl4 2278 3 mn 02 s
Dp5 1733 2 mn 53 s Tl5 2856 3 mn 48 s
Dp6 2277 3 mn 48 s Tl6 1934 2 mn 34 s
Dp7 1912 3 mn 11 s Tl7 3579 4 mn 46
Dp8 1460 2 mn 25 s Tl8 2331 3 mn 06 s
Dp9 1479 2 mn 28 s Tl9 2566 3 mn 25 s
- - - Tl10 2436 3 mn 15 s
- - - Tl11 3137 4 mn 10 s
- - - Tl12 2040 2 mn 43 s
- - - Tl13 3129 4 mn 10 s
- - - Tl14 3520 4 mn 41 s
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(Schmitt and Seuront, 2001 2002):

< ∆Xτ q>~~ ∆XT
q      ; (2)

where ζ(q) is the moment function characterizing
the fluctuations of the norm, ∆Xτ , regardless of
the scale and intensity, and T is a characteristic
(fixed) large time scale.  In other words, the low
and high orders of moment, q, characterize smaller
(i.e., the more-frequently observed) displacements
and larger (i.e., the less-frequent) displacements,
respectively.

Diffusion versus anomalous diffusion
The exponent function, ζ(q), can be very

useful in characterizing the statistics of the so-
called random walk.  For Brownian motion, it is
well known that ζ(q)=q/2.  In this framework, only
the moment of order 2 is estimated, and whenever
ζ(2)=1, the process corresponds to normal diffu-
sion, whereas the rich field of anomalous diffusion
corresponds to dispersive processes with ζ(2)≠1
(Castiglione et al. 2000).  The idea behind this

characterization using only 1 moment was implicit-
ly to assume that if  ζ(2)=1, one has for all values
of q, ζ(q)=q/2 so that the process has the same
diffusive properties as Brownian motion.  Of
course, this is not necessarily the case, and one
can have ζ(2)=1  (so that the diffusion is appar-
ently normal; see Ferrari et al . 2001), whereas for
other moments ζ(q)≠q/2.  One should note here
that the same general conclusions can be drawn
with the more-general fractional Brownian motions
defined as ζ(q)=Hq, where H is a constant.  It is
thus better to characterize the process with the
entire function, ζ(q), instead of a single exponent
(Schmitt and Seuront 2001 2002).  In this frame-
work, it would be more coherent to denote“anom-
alous diffusion”as diffusion with function ζ(q)≠
q/2 .  

When the function ζ(q) is nonlinear, we refer
to the resulting diffusion as being“multifractal”
(e.g., Seuront et al. 1999) by analogy with multi-
fractal characterization of correlations and intermit-
tency in turbulence (see Andersen et al. 2000 for a
recent review).  The term“multifractal random
walk”has already been proposed in another con-
text (Bacry et al. 2001).  Before this, diffusion char-

Fig. 2. Three-dimensional swimming pathway of the cladoceran, Daphnia pulex, recorded at 10 Hz during 4 min (path Dp2; see Table
1).
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acterized by the nonlinear ζ(q) function was called
different names:“generalized diffusion”(Aranson
et al. 1990),“multidiffusion”(Sneppen and Jensen
1994),“multifractionnal kinetics”(Carreras et al.
1999), and“strong diffusion”(Castiglione et al.
1999).

In more practical terms, the multifractal frame-
work, widely applied to the characterization of
nutrient, phyto-, and zooplankton patchiness
(Seuront et al. 1996a b 1999 2002, Seuront and
Lagadeuc 2001, Lovejoy et al. 2001), character-
izes positively skewed frequency distributions,
reflecting heterogeneous distributions with a few
dense patches and a wide range of low-density
patches.  Now, one has to remember than under
the random walk (i.e., normal diffusion) hypothesis,
the amplitude of successive displacements, x, fol-
lows a Gaussian distribution, in which case, the
probability density function decreases as e-x2/2,
which is an extremely high rate.  In practice, when
a swimming path is specifically referred to as being
multifractal, high-amplitude displacements are
much more frequent than in the random walk case.
Furthermore, there is memory in successive dis-
placements, meaning that they are not indepen-

dent as they are for the classical random walk, and
a significant long-range correlation exists between
them.  These properties are responsible for the
observed divergence observed in the function ζ
(q) between normal diffusion (ζ(q)=q/2) and
anomalous diffusion (ζ(q)≠q/2 , nonlinear and
concave).  

Practical estimation of function ζ(q)
The exponents, ζ(q), are estimated by the

slope of the linear trends of < ∆Xτ q > vs. τ in a
log-log plot.  However, because an objective crite-
rion is needed to decide upon an appropriate
range of scales to include in the regressions, we
used the values of the time scales which satisfied
2 optimization criteria.  

First, we consider a regression window of
varying width that ranges from a minimum of 5
data points (the fewest number of data points
which ensures the statistical relevance of a regres-
sion analysis) to the entire data set.  The smallest
windows are slid along the entire data set at the
smallest available increments, with the entire pro-
cedure iterated (n - 4) times, where n is the total
number of available data points.  Within each win-

Fig. 3. Three-dimensional swimming pathway of the copepod, Temora longicornis, recorded at 12.5 Hz during 4 min 10 s (path Tl11;
see Table 1).
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dow and for each width, we estimate the coeffi-
cient of determination (r2) and the sum of the
squared residuals for the regression.  We subse-
quently use the values of τ (Eq. 2) which maxi-
mize the coefficient of determination and minimize
the total sum of the squared residuals (Seuront
and Lagadeuc 1997) to define the scaling range
and to estimate the related exponents, ζ(q).
Hereafter, this 1st optimization procedure is
referred to as the“R2-SSR”criterion.  

Second, noting that Eq. (2) can be rewritten
as (Seuront et al. 2004)

d log < ∆Xτ q > /d logτ=ζ(q), (3)

it appears that if scaling exists, it will manifest itself
as a slope of 0 in plots of d log[<ll∆Xτ q >]/d logτ
vs. logτ.  Equation (3) can thus be rewritten as

d d log < ∆Xτ q > /d logτ /d logτ=0. (4)

As stated above, to ensure the statistical rele-
vance of this procedure, we use a sliding regres-
sion window similar to the one described in the
“R2-SSR”procedure.  The significance of the dif-
ferences between the slope of each regression
and the expected slope line of 0 was directly test-
ed using standard statistical analysis (see Zar
1996).  The scaling range was then defined as the
scales that statistically verified Eq. (4) and the 1st
optimization criterion.  Finally, the intercept of the
range of scales exhibiting zero-slope behavior pro-
vides the exponents

,
values for ζ(q) (Eq. 4).

Hereafter, this procedure is referred to as the
“zero-slope”criterion.  

RESULTS

Behavior of free-swimming Daphnia pulex and
Temora longicornis

The 3D records of the swimming behaviors of
Daphnia pulex and Temora longicornis obtained at
10 and 12.5 frames/s are exemplified in figs. 2 and
3, respectively.  The 2D projections of these trajec-
tories in the xy,xz, and yz planes are also shown.
Both species actively moved in highly fluctuating
and irregular ways, alternating between periods of
relatively straight and smooth swimming and peri-
ods of erratic motions including strong jumps in all
3 dimensions, ensuring the 3D nature of the
recorded pathways.  This feature was nevertheless
clearer for T. longicornis.  Its trajectory was indeed

characterized by very strong jumps (up to 30 body
lengths in 0.08 s), while D. pulex only exhibited
jumps of 2~3 body lengths in 0.1 s (see also Fig.
1).  

We also stress here another difference
between the observed behaviors of these 2
species.  Indeed, it can be seen from the 2D pro-
jections of the 3D swimming paths that the swim-
ming behavior of D. pulex was smoother and more
regular in the xy plane than in the 2 vertical ones.
In contrast, the swimming path of T. longicornis
seemed to be more isotropic, with the same
macroscopic structure in all 3 dimensions.  

These observations are investigated, both
qualitatively and quantitatively, more thoroughly in
the next section.  

Multifractal properties of Daphnia pulex and
Temora longicornis displacements

We first consider the properties of both D.
pulex and T. longicornis swimming paths in a 3D
space, and second we focus on the 2D projections
of these trajectories in the xy,xz, and yz planes.
This may be of prime interest (i) to ensure the reli-
ability of comparing results obtained from 2D and
3D experimental procedures and (ii) to investigate
potential differential behaviors.  

Three-dimensional displacements
The analysis of the 3D trajectories of zoo-

plankton displacements of figs. 2 and 3 is shown in
figs. 4A and 5A.  The scaling is very good for a
range of scales of 2 decades for both species.
More specifically, this scaling manifests itself for D.
pulex and T. longicornis for time scales ranging
from 0.6 to 40 s and from 0.3 to 30 s, respectively.
Considering the mean swimming speed of D. pulex
and T. longicornis (2.4 and 1.3 mm/s), the corre-
sponding distances respectively vary between 1.45
and 96, and 0.4 and 39.0 mm.  Practically, that
means that the amplitude of displacements bound-
ed between 1.45 and 96 mm for D. pulex, and 0.4
and 39.0 mm for T. longicornis are structured in a
scale-dependent (i.e., scaling) way.  In other
words, knowledge of the distribution of the small-
est displacements is sufficient to infer that of the
largest displacements.  Finally, we stress here that
both the departure from scaling for small time
scales and slight differences observed between
this departure for D. pulex and T. longicornis can
be related to differential, species-specific reaction
times.  Thus a species with a fast reaction time is
better able to maintain the scaling structure of its
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displacements for smaller displacements than a
species with a slower reaction time without being
subject to contamination of its swimming path by
external processes such as turbulent diffusion,
microscale shear, or localized changes in viscosity.  

Now, to investigate the nature of a potential
departure from normal diffusion in D. pulex and T.
longicornis swimming paths, the previous scaling
behaviors are compensated for by the normal dif-
fusion scaling exponent, τq/2.  In other words, in
cases of normal diffusion, Eq. (2) is written as

< ∆Xτ q >~~ ∆XT
q , (5)

and compensation by the normal diffusion scaling
exponent, τq/2, leads to rewriting Eq. (2) as

< ∆Xτ q > / ~~ < ∆XT
q > (6)

where K(q) is the compensated exponent function
that verifies K(q)=0 in case of normal diffusion,
regardless of the values of the moment, q.  In
other words, a log-log plot of < ∆Xτ q>/τq/2 ver-
sus  τ should exhibit a flat behavior (i.e., K(q)=0).
The range of scales used to estimate the compen-
sated function, K(q), was chosen using the“R2-
SSR”and“zero-slope”criteria defined above.
The resulting compensated scalings (Figs. 4B, 5B)
show that function K(q) greatly differs from the nor-
mal diffusion case of K(q)=0, for behaviors of both
D. pulex and T. longicornis.  This confirms the
scaling ranges presented above, and indicates the
anomalous diffusive character of the swimming
behavior of the 2 species investigated here.
Moreover, it appears that function K(q)≠0 even for
the lowest values of the moment q for D. pulex
(Fig. 4B), while this difference becomes percepti-
ble for moments q > 2 for T. longicornis (Fig. 5B).
The frequency distributions of successive displace-
ments then significantly differ from a random walk
even with the smallest displacements by D. pulex.
Alternatively, the smallest displacements of T.
longicornis can reasonably be thought of as follow-
ing a random walk.  More specifically, this sug-
gests that the swimming behaviors of D. pulex and
T. longicornis correspond to 2 different types of
anomalous diffusion.  This is confirmed below by
analysis of the exponent function, ζ(q).  

The nonlinearity and convexity of function ζ
(q), compared to the linear behavior, i.e., ζ(q)=q/2,

Fig. 4. Moment, < ∆Xτ q >, and the compensated moment, <
∆Xτ q>/τq/2, vs.τ for q=1, 2, and 3 (from bottom to top) in

log-log plots (A and B, respectively), computed from the swim-
ming path, Dp2 (see Table 1), of the cladoceran, Daphnia
pulex.  The scaling of the moments (A) is very good over 2
decades, ranging from 0.6 to 40 s.  This is confirmed by the
scaling of the residual (B) that indicates anomalous diffusion
(i.e., a slope differing from 0) over a similar range of scales.
(C) Function ζ(q) estimated as the slope of the linear trends of
< ∆Xτ q > vs. τ in a log-log plot, compared to a fit corre-
sponding to normal diffusion (ζ(q)=q/2, dotted line).  The non-
linearity and convexity of the empirical curve are indicative of
multifractality.

10000

1000

100

10

1

0.1

0.01

100

10

1

0.1

2.5

2.0

1.5

1.0

0.5

0.0

0.01 0.1
τ(s)

ζ(3)

ζ(2)

ζ(1)

<
(∆

X
τ

)q
>

<
(∆

X
τ

)q
>

/τ
q/

2
ζ

(q
)

1 10 100

A

B

C

1000

0.1 1
τ(s)
10 100 1000

0 1
q

2 3 4 5

τ
T

q/2

τ
T

q/2

τ
T

K(q)



Zoological Studies 43(2): 498-510 (2004)506

expected in cases of normal diffusion, indicates
the multifractal nature of the swimming paths of
both D. pulex and T. longicornis (Figs. 4C, 5C).  As
suggested above, the departure from linearity is
very strong for D. pulex, even for low values of
moment q (Fig. 4C), while for T. longicornis, this
departure is very clear only for moments larger
than 2 (Fig. 5C).  This confirms, first, the anom-
alous diffusive characters of the swimming behav-
iors of D. pulex and T. longicornis, and second, the
species-specific nature of the so-called multifractal
random walk shown here.  We indeed see in Figs.
4C and 5C that the 2 curves markedly differ for the
2 species, since the curvature for D. pulex is much
more pronounced than that for T. longicornis.
Furthermore, while ζ(2)~-1 for the latter, ζ(2) is
clearly larger than 1 for the former.  Let us remem-
ber that diffusion is often characterized by the dif-
fusivity, Γ, defined as :  

< ∆Xτ
2 > ~~Γτ. (7)

Within our scaling framework, whenever ζ(2)≠1,
the diffusivity is scale-dependent and obeys the
law, Γ(τ)~~τζ(2)-1.  Here, the diffusivity for T.
longicornis is almost scale-independent, whereas
the diffusivity for D. pulex is clearly scale-depen-
dent.  In this case, even a 2nd-order analysis
would reveal anomalous diffusion.

Two-dimensional displacements
Analysis of the 2D components of the initial

3D swimming paths leads to further results (Fig.
6).  We thus show clear differences between D.
pulex and T. longicornis.  The multifractal proper-
ties of the swimming path of T. longicornis are very
similar in 2 and 3 dimensions (Fig. 6A).  The swim-
ming behavior of T. longicornis can then be
thought as being isotropic.  On the contrary, D.
pulex presents differential behavior in 2 and 3
dimensions.  Function ζ(q) estimated from the
projection in the xy plane has the same shape as
the original 3D one.  Alternatively, function ζ(q)
estimated from projections in the xz and yz planes
diverges from the 3D one for moments q>3 (Fig.
6B).  

DISCUSSION

Multifractal scaling exponents reveal an opti-
mization strategy of zooplankton

We here interpret the nonlinearity of the expo-

Fig. 5. Moment, < ∆Xτ q >, and the compensated moment, <
∆Xτ q >/τq/2, vs. τ for q=1, 2, and 3 (from bottom to top) in

log-log plots (A and B, respectively), computed from the swim-
ming path Tl11 (see Table 1) of the copepod Temora
longicornis.  The scaling of the moments (A) is very good over
2 decades, ranging from 0.3 to 30 s.  This is confirmed by the
scaling of the residual (B) that indicates anomalous diffusion
(i.e., slope differing from 0) over a similar range of scales.  (C)
Function ζ(q) estimated as the slope of the linear trends of <
∆Xτ q > vs. τ in a log-log plot, compared to a fit corresponding
to normal diffusion (ζ(q)=q/2, dotted line).  The nonlinearity
and convexity of the empirical curve are indicative of multifrac-
tality.  Function  ζ(q) estimated from Daphnia pulex 3D behav-
ior is shown for comparison (thick continuous gray curve).
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nent ζ(q) in the framework of a foraging strategy
using Eq. (6).  Let us first recall that large q values
are associated with large displacements, whereas
small q values characterize small displacements.
For small time scales (and hence small distances),
and large q, the ratio (τ/T)K(q) is large, showing
that there are more large displacements for the
multifractal random walk (K(q)>0) than for the clas-
sical random walk (K(q)=0).  On the other hand, for
small q, K(q)<0, so that the ratio (τ/T)K(q) is small,
and the multifractal random walk has fewer small
displacements compared to the classical random
walk.  For larger time scales, when τ is close to
the largest scale T of the system, the ratio (τ/T)K(q)

is close to 1, so that the difference between the
multifractal random walk and classical random
walk is less perceptible.  This discussion shows
that the scaling multifractal function, ζ(q), charac-
terizes (i) in a scale-invariant way, exploration of
the volume by the plankter, and (ii) for large and

small moments, a type of optimization of this
exploration.  This may explain why this ζ(q) func-
tion is likely to be species dependent and hence
strategy dependent.  

Comparing zooplankton behavior with the
structure of the surrounding environment

The results presented here have several
salient implications for our understanding of zoo-
plankton behavior and trophodynamics.  In particu-
lar, the multifractal statistics observed in the
behaviors of both Daphnia pulex and Temora
longicornis are reminiscent of the multifractal (i.e.,
patchy) distributions found for phytoplankton under
different turbulence intensities (e.g., Seuront et al.
1999, Lovejoy et al. 2001, Seuront and Schmitt
2001).  Considering the remote-sensing ability of
zooplankton organisms, their behaviors can be
strongly influenced by the distribution of their
phytoplanktonic prey.  Ultimately, knowledge of the
precise nature of zooplankton swimming behavior
can then be a way to infer the spatial distribution of
prey.  

Two-dimensional versus 3D fractal dimension
estimates

The absence of clearly defined differential
modes of swimming behavior of T. longicornis (cf.
Fig. 6A) in the horizontal and vertical dimensions
suggests the absence of a feeding switch between
2 different kinds of food sources as with the non-
motile alga Nannochloropsis occulata and the
motile flagellate Oxyrrhis marina used in the pre-
sent study.  Considering the evidence for prey-
switching behavior (e.g., Kiørboe et al. 1996,
Caparroy et al. 1998), multifractal analysis is thus
suggested as a diagnostic framework to determine
the kind of prey zooplankton preferentially feed on
in a pluri-specific prey assemblage.  On the con-
trary, identification of different modes of swimming
behavior for D. pulex (see Fig. 6B) in the vertical
and horizontal dimensions may reflect (i) their
characteristic hop-and-sink behavior that intrinsi-
cally imparts differential importance to the horizon-
tal and vertical dimensions, (ii) the effect of gravity
which affects most zooplankton species (Strickler
1982), and (iii) a reminiscence of diel vertical
migration as a predator-avoidance strategy (Loose
1992, Loose et al. 1992).  Differential swimming
behaviors in the horizontal and vertical planes may
finally also be suggested as a potential basis for
investigating the predation risk associated with dif-

Fig. 6. Function ζ(q) estimated from Temora longicornis (A)
and Daphnia pulex (B) swimming paths Tl11 and Dp2, respec-
tively (see Table 1).  Function ζ(q) estimated from the initial 3D
paths (continuous curve) is compared to the functions obtained
from their 2D projections on the  xy(+),  yz(-), and  xz(x) planes.  
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ferential swimming behaviors related to mating,
feeding, or predator-avoidance strategies.
Moreover, this result is fully congruent with the
higher fractal dimension found for the vertical com-
ponent of D. pulex swimming behavior (Seuront et
al. 2004). Indeed, an increase in the fractal dimen-
sion, D, is equivalent to a decrease in the scaling
exponent, ζ(2) (see Seuront et al. 2002 for further
details).  Depending on the relative velocities of
predator and prey, a swimming behavior character-
ized by a high fractal dimension, i.e., a low ζ(2),
may imply a high encounter probability with preda-
tors, relative to more-linear swimming paths.  

Individual behaviors affect the outcomes of
predator-prey interactions, especially in the pelagic
environment, where prey movement is important
both as a cue to predators (Brewer and Coughlin
1995) and a determinant of the encounter rate
(Gerritsen and Strickler 1977).  Moreover, the dis-
tribution of prey organisms is very important for
predators, as recently investigated numerically
(Seuront 2001, Seuront et al. 2001), because food
availability changes depending on its distribution.
If a predator can remotely detect its surroundings,
patchy prey distributions should be more efficient.
In contrast, when a predator has no remote detec-
tion ability, more-homogeneous prey distributions
should be relatively better, because available food
quantity or the encounter rate becomes proportion-
al to the searched volume as patchiness decreas-
es.  Moreover, the very complex patchy structure
associated with a multifractal distribution may also
change the nature of the food signal, usually
regarded as being homogeneously distributed in
space and time in models of predator-prey
encounter rates.  Indeed, planktonic animals have
been shown to remain within patches when feed-
ing (Price 1989), or to exhibit more fine-scale
movements in areas of higher food concentration
(Bundy et al. 1993).  Encounter rates might greatly
differ when organisms feed within patches (inten-
sive searching) as opposed to searching for new
patches (extensive searching), and their related
behaviors should be more and less complex,
respectively.  Extrapolating this reasoning to ran-
dom walk and multifractal random walk, intensive
and extensive searches might then be related to
swimming behavior which increasingly diverges
from random walk.  Foraging models likely incor-
porate switching between feeding and searching
behaviors as scaled to organism size, in order to
effectively simulate these complex physical-biolog-
ical relationships (Seuront and Lagadeuc 2001).
This was also interpreted above in the framework

of optimization of the foraging strategy in multi-
scale patches.  Comparison of the multifractal
nature of plankton swimming behavior and plank-
ton distributions will then increase our understand-
ing of zooplankton trophodynamics.  In particular,
in the ocean, which is increasingly regarded as a
“seascape”considering the growing awareness of
the heterogeneous nature of microscale processes
(e.g., Seymour et al. 2000, Waters and Mitchell
2002, Waters et al. 2003), behavioral studies will
be of prime interest for improving our understand-
ing of the functioning of marine ecosystems from a
bottom-up view (Seuront 2001, Seuront et al.
2001).  

CONCLUSIONS

We stress here that an important conse-
quence of the multifractal nature of zooplankton
swimming behavior, illustrated using the 3D swim-
ming paths of Daphnia pulex and Temora longicor-
nis, is its deviation from Brownian motion and frac-
tional Brownian motion.  While these latter 2 have
been suggested for characterizing the movement
of organisms (Frontier 1987), Wiens and Milne
(1989) found that observed beetle movements
deviated from the modeled fractional Brownian
motion.  A follow-up study by Johnson et al. (1992)
found that beetle movements reflect a combination
of normal and anomalous diffusions.  

While an extensive discussion of the anom-
alous diffusion of copepods in a multifractal envi-
ronment can be found elsewhere (Marguerit et al.
1998, Schmitt and Seuront 2001), it is suggested
here that multifractal analysis might become an
efficient diagnostic tool to access the detailed
nature of zooplankton swimming behaviors, in par-
ticular for identifying differential swimming behav-
iors in different spatial directions.  Future modeling
attempts of zooplankton swimming behavior may
also have to take into account the multifractal char-
acter of an organism

,
s movements as recently

suggested by Schmitt and Seuront (2001 2002).  
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