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Chia-Ying Ko, Ruey-Shing Lin, Tzung-Su Ding, Chih-Hao Hsieh, and Pei-Fen Lee (2009) Identifying 
biodiversity hotspots by predictive models: a case study using Taiwan’s endemic bird species.  Zoological 
Studies 48(3): 418-431.  Predicting species distributions and identifying biodiversity hotspots are essential 
in designing conservation strategies.  Because of different spatial scales and/or species characteristics, 
uncertainty still exist as to which model is the best.  Several models have been proposed to calculate the 
probability of species occurrences, predict biodiversity hotspots, and decide importance levels of those hotspots.  
We constructed predictive distribution models for 14 of 16 endemic bird species in Taiwan using a fine-
resolution (1 × 1 km) breeding bird distribution dataset compiled over the past decade as well as environmental 
variables.  We compared the performances of the 4 models: logistic regression (LR), multiple discriminant 
analysis (MDA), genetic algorithm for rule-set prediction (GARP), and artificial neural network (ANN).  Maps 
for biodiversity hotspots were generated based on the species distributions from the 4 models.  To account for 
potential uncertainty, we constructed hotspot maps using a frequency histogram and probability density function 
approaches.  Based on the distribution maps and the area under the curve (AUC) of the receiver operating 
characteristic, all of our models made good predictions for each species (all AUC values were > 0.75).  The non-
linear models (GARP, ANN, and LR) provided better predictions than did the linear (MDA) model.  GARP was 
the most consistent model when evaluated by it kappa, sensitivity, accuracy, and specificity values for each 
species and the 3 species categories (common, uncommon, and rare species).  The prevalence of all species 
did not affect the final predictive performance. The 5 biodiversity hotspot maps derived from the frequency 
histogram approach showed a relatively similar pattern to maps generated by the probability density function, 
which indicated that of mid- to high-elevation areas had higher probabilities.  In spite of some inconsistencies, 
the hotspot maps identified from these 2 approaches were fairly representative when evaluated against currently 
known hotspots.  A GAP analysis indicated only 25% of the hotspots are currently protected by national parks.  
We concluded that the LR, GARP, ANN, and MDA models are all feasible to use for modeling bird species 
distributions.  Although there were some limitations, we suggest using a combination approach to identify 
common features and conservation priorities of biodiversity hotspots.  Comparing known and predicted hotspots 
can promote the reliability of the models as well as provide managers with greater confidence when planning 
conservation policies.  Finally, this approach to identifying common features and conservation priorities of 
biodiversity hotspots can be applied to evaluate conservation efforts and provide a better tool to achieve efficient 
conservation.  http://zoolstud.sinica.edu.tw/Journals/48.3/418.pdf
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Understanding species distributions and the 
environmental factors affecting those distributions 

is of fundamental importance in reserve planning 
(Corsi et al. 1999, Elith et al. 2006) and biodiversity 
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conservation (Gray et al. 2006, Lira-Noriega et al. 
2007).  To gain information on species distributions, 
many predictive models based on correlating 
presence data of species with environmental 
predictors are widely used (Manel et al. 1999a).

Research on species distribution predictive 
techniques has yet to produce a perfect modeling 
system (Guisan and Zimmermann 2000, Hirzel 
and Guisan 2002).  Traditionally, models used in 
ecology to predict potential species distributions 
were multivariate in nature and based on linear 
functions such as multiple/linear regression, 
and mul t ip le d iscr iminant  analys is  (MDA; 
Austin and Meyers 1996, Jose and Fernando 
1997).  However, those methods led to some 
statistical and theoretical concerns, and methods 
which can model non-linear relationships were 
developed over time.  Those methods include 
logistic regression (LR), genetic algorithm for 
rule-set prediction (GARP), ecological-niche 
factor analysis, maximum entropy, and artificial 
neural networks (ANN; Lek et al. 1996, Jose and 
Fernando 1997, Aitkenhead et al. 2004, Stockman 
et al. 2006, Phillips et al. 2006).  These models 
give ecologists better tools to accurately predict 
species distributions (Stockwell 2007).  However, 
increasing difficulties over which models to choose 
have also become a challenge.  Although several 
studies compared model accuracies in predicting 
species distributions (Manel et al. 1999b, Moisen 
and Frescino 2002, Robertson et al. 2003), 
uncertainty still exists as to which model is the 
best to select under different spatial scales and/or 
species characteristics (Zaniewski et al. 2002).

Much at tent ion has been focused on 
biodiversity hotspots (Myers et al. 2000, Kati et 
al. 2004).  Sound biodiversity hotspots analyses 
and effective management of such hotspots are 
helpful for protecting endangered and endemic 
species (Myers et al. 2000, Bonn et al. 2002).  
Unfortunately, biodiversity hotspots tend to occur 
in areas with significant human impacts (Myers 
et al. 2000), leading to increase pressures on 
rare, threatened, and endemic species.  At large 
geographic scales, a hotspot map can provide 
useful information for conservation planning (Reid 
1998).

The development of species distribution 
prediction techniques and approaches has 
benefited from the application of biodiversity 
mapping in recent years (Rodríguez et al. 2007).  
Through collecting information from the field, 
modeling their distributions using various tools and 

overlaying potential distributions with protected 
areas, ecologists developed the gap analysis 
program (GAP) for conserving biodiversity (Scott 
et al. 1993).  However, using a single model to 
predict biodiversity hotspots might bear some 
uncertainties.  Protecting all biodiversity hotspots 
in a situation of budget restrictions is almost 
impossible.  Therefore, using several models to 
predict biodiversity hotspots and deciding the 
importance levels of those hotspots is a reliable 
approach (Araújo and New 2007).  By analyzing 
the importance levels of biodiversity hotspots to 
determine befitting conservation priorities and 
conservation efficiency can be improved by paying 
more attention to higher-level hotspots.  Analyzing 
the geographical and environmental constraints 
of higher-level biodiversity hotspots can also help 
understand the ecological characteristics of these 
hotspots.

The area of Taiwan is only about 36,000 km2,  
but it contains diverse ecosystems and extensive 
forest cover.  Due to high human density and 
intense economic development over the past 
several decades, conservation in Taiwan is 
chal lenging.   Researchers have intensely 
investigated the distribution of animals in the past 
decade and have established a rich database of 
bird distributions (e.g., Lee et al. 2004).  These 
long-term data are useful for predicting species 
distributions and comparing different predictive 
models.  It is essential to determine the locations of 
biodiversity hotspots in Taiwan so that appropriate 
measures of ecosystem management can be 
proposed.

The purpose of this study was to compare 
outputs of 4 predictive models and combine 
species distribution models to locate biodiversity 
hotspots.  Using fine-resolution (1 × 1 km) endemic 
bird species data from Taiwan, we compared 
the results of 4 widely used species distribution 
models: LR, MDA, GARP, and ANN.  We also 
examined alternative techniques of ensemble 
forecasting, i.e., the frequency histogram and 
probability density function approaches, to derive 
biodiversity hotspots.  Finally, we evaluated 
the current protection status using the hotspot 
distribution map.  Since the birds we examined 
are mostly forest-dwelling by nature, our hotspot 
map focused on forest bird species biodiversity in 
Taiwan.

Study area

The island of Taiwan lies at latitudes 22°-25°
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18'N and longitudes 120°27'E-122°E (Fig. 1), and 
is located between the Taiwan Strait to the west 
and the Pacific Ocean to the east.  Mountainous 
areas comprise almost 65% of the island and 
the Central Mountain Range passes north-south 
through the main axis of the island.  In the western 
portion are mostly plains and hills.  The climate 
ranges from tropical in the south to subtropical 
in the north and alpine in the high mountains  
(to 3952 m), with strong influences of alternating 
monsoons (Lee et al. 2004).  The weather is 
generally hot and moist, with a mean annual 
temperature of 18.0°C and an average annual total 
precipitation of 2510 mm.  Temperature decreases 
with increasing elevation, with a lapse rate of 
-5.43°C/km (Su 1984).  Because of the highly 
variable topography, a great diversity of forest 
habitats can be found in Taiwan (Lee et al. 2004, 
Koh et al. 2006).

Taiwan has long been under high develop-
ment pressure.  A very high population density 
(of around 635 individuals/km2 in 2007) and 
construction of roads have resulted in forest 
fragmentation and destruction that have threatened 
wildlife.  Although we have no record of resident 

bird species becoming extinct, many bird species 
have limited distributions, and some areas have 
shown clear decreases in species richness (Lee et 
al. 2004).

MATERIALS AND METHODS

Bird data

We compiled bird distribution data from 2 
bird inventory projects conducted in 1999-2003 
(Koh et al. 2006) and 1993-2004 (Hsu et al. 2004).  
We used point counts to conduct field sampling.  
Sampling sites were chosen based on 4 geo-
information system (GIS) layers, i.e., ecoregion, 
vegetation type, road distribution, and elevation 
range.  Sites were selected to best represent the 
habitat characteristics of a particular elevation 
and ecoregion type.  Since many breeding birds 
in Taiwan live in forests, whenever possible, we 
chose forested areas to obtain potential occurrence 
records of all species.  Each site was sampled, 
with sufficient duration (Shiu and Lee 2003), once 
a year or seasonally during the survey period.

We transformed the sampling sites to a  
1 × 1 km grid system.  All grids with a species 
richness of ≥ 2 were put into the models to ensure 
that the absence data of species were credible.  In 
total, 4082 of 37,552 cells had either the complete 
presence or absence of bird data (Fig. 1).

Currently there are 16 endemic bird species 
in Taiwan (Table 1).  We excluded Styan’s Bulbul 
(Pycnonotus taivanus) and another relatively 
new addition, the Taiwanese Hwamei (Garrulax 
taewanus) (Dickinson 2003, Li et al. 2006), 
from the analyses due to possible confusions 
with the Chinese Bulbul (P. sinensis) and the 
introduced Hwamei (G. canorus), respectively.  
The prevalence of each species ranged from 1% 
to 18% (Table 1).  Three distribution categories, 
based on the general consensus and prevalence 
values, were recognized: common (> 4%), 
uncommon (3%-4%), and rare species (< 3%).

Environmental variables

We used over 80 environmental variables 
to model species distributions.  However, some 
variables did not provide a significant contribution 
to explaining the species distribution relationships.  
‘Important’ variables were classified into 4 types: 
topography/geography, climate, vegetation/land 
use, and human activities (Table 2).  Most of 

Fig. 1.  Location of Taiwan showing the 5 national park 
boundaries and the 4082 1 × 1 km grid cells used for bird 
sampling.
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these variables were described by Lee et al. 
(2004) and Koh et al. (2006).  We generated 
elevation, elevation range, and ridgeness layers 
based on a digital elevation model (DEM, at a 
40 m resolution) created by the Aerial Survey 
Office, Forestry Bureau, in Taiwan.  Ridgeness 
is a variable designed to capture the complexity 
of the topography.  We calculated ridgeness by 
applying the flow direction and accumulation 
functions in ArcGIS (Li et al. 2005).  Climate 
variables included annual mean temperature, total 
monthly precipitation, and other related variables 
for the period of 1959-1985.  Vegetation-related 
layers included a land-cover map generated by a 

supervised classification of SPOT mosaic images 
taken in the latter half of 2002 and provided by the 
Aerial Survey Office, Forestry Bureau.  We also 
calculated a normalized difference vegetation index 
(NDVI) using these images.  The forest cover type 
was extracted and used to calculate forest density 
(in percent (%), as the ratio of forest area to grid 
area) and number of forest patches within the 
grid.  We used road density, percentage of built-up 
areas, and distances to the nearest city and road 
to represent the dimension of human activities.  All 
of these indices of human activities were published 
by the Ministry of the Interior, Taipei, Taiwan in 
2000.  Road density was calculated as the ratio 

Table 1.  List of 16 endemic bird species in Taiwan.  The prevalence was calculated based 
on 4082 1 × 1 km bird sampled grid cells

Family Common English Name Scientific Name* Category Prevalence (%)

Phasianidae Taiwan Hill Partridge Arborophila crudigularis Common 10
Swinhoe’s Pheasant Lophura swinhoii Rare 1
Mikado Pheasant Syrmaticus mikado Rare 2

Corvidae Taiwan Blue Magpie Urocissa caerulea Uncommon 4
Paridae Yellow Tit Parus holsti Uncommon 4
Pycnonotidae Styan’s Bulbul Pycnonotus taivanus Common 10
Sylviidae Taiwan Bush Warbler Bradypterus alishanensis Uncommon 3
Timmallidae Taiwanese Hwamei Garrulax taewanus Common 5

White-whiskered Laughing-thrush Garrulax morrisonianus Common 5
Steere’s Liocichla Liocichla steerii Common 16
Taiwan Barwing Actinodura morrisoniana Uncommon 3
White-eared Sibia Heterophasia auricularis Common 18
Taiwan Yuhina Yuhina brunneiceps Common 18

Reguliidae Flamecrest Regulus goodfellowi Uncommon 3
Turdidae Taiwan Whistling Thrush Myophonus insularis Common 11
Muscicapidae Collared Bush Robin Luscinia johnstoniae Common 5

*Nomenclature and English names follow Dickinson (2003) and Li et al. (2006).

Table 2.  List of environmental variables used in this study

Category Environmental variables

Topography/geography Slope, elevation, distance to an area above 3000 m, distance to a river, distance to 
the coastline, river density, and ridgeness.

Climate Annual mean temperature, monthly mean temperature for 12 mo, warmth index, total 
annual precipitation, total precipitation for each month, total precipitation in the dry 
period (Oct.-Mar.), ratio of dry-period to total annual precipitation, and number of 
months short of precipitation.

Vegetation and land use Forest density, number of forest patches, mean normalized difference vegetation 
index, and naturalness index

Human activities Distance to the nearest road, distance to the nearest city, urban development index, 
population density, road density, and percentage of built-up areas
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of the total length (m) of all levels of paved roads 
to the total area of the grid (ha).  The percentage 
of built-up areas was calculated as the ratio of the 
total built-up area to the total area of the grid.  We 
used ERDAS Imagine 8.7 and ArcGIS 9.2 to derive 
and analyze these variables.

Modeling methods

We applied 4 commonly used models to 
predict species distributions: the MDA, LR, ANNs, 
and GARP models.  The 4 models differ in (1) the 
data used (GARP uses only presence records in 
contrast to the others which use both presence 
and absence records); (2) underlying function (MDA 
uses a linear function while the others apply non-
linear functions), and (3) output characteristics (the 
MDA has outputs of either 0 or 1 while the others 
have outputs ranging from 0 to 1).

We followed standard procedures to derive 
the species distr ibution maps (Guisan and 
Zimmermann 2000, Moisen and Frescino 2002, 
Elith et al. 2006).  We first analyzed the relationship 
between the occurrence of each species and each 
environmental variable and retained variables 
with significant correlations (p < 0.01) in the 
prediction models.  After this elimination, there 
were approximately 10-20 environmental variables 
of different types for each species included in each 
model.  No quadratic terms were used.

We used SAS 9.0 software to perform 
the MDA and LR calculations and backward 
el iminat ion to select var iables in the f inal 
model.  Significant variables at each step had to 
significantly reduce the scaled deviance.  The 
change in the scaled deviance was approximately 
distributed like χ2 (McCullagh and Nelder 1989, 
Collett 1991).  Although all explanatory variables 
were potential predictors, only those selected by 
the aforementioned criterion were used in the final 
interpretation.  For the GARP calculations, we used 
a desktop implementation of GARP (Scachetti-
Pereira 2001).  We combined 4 types of rules to 
build the final model: atomic, logistic regression, 
bioclimatic envelope, and negated bioclimatic 
envelope rules.  We set GARP to perform 100 runs 
per species with a maximum of 1000 iterations 
and a convergence limit of 0.01.  With these 
settings, GARP produced 100 models per species 
in which all grid cells were predicted to be either 
present (1) or absent (0).  We then summed these 
model results to derive a probability map for each 
species.  We used MATLAB 7.0 to perform the 
ANN and determined the number of hidden layers 

and neurons in the hidden layers through a series 
of iterations and model performance assessments 
(Manel et al. 1999b).  A network had 1 hidden layer 
with 5 neurons being built for each species.

Model evaluation

The LR, ANN, and GARP models require 
an arbitrary threshold probability to determine 
a species’ presence from the model prediction.  
Selections of the threshold involve evaluating 
omission and commission errors.  Many studies 
(e.g., Fielding and Bell 1997, Liu et al. 2005) found 
that a species’ prevalence may interact with the 
threshold, and it was suggested that thresholds be 
selected and model performance assessed.

To choose objective thresholds for each 
species’ model, we first estimated the area 
under the curve (AUC) of the receiver operating 
characteristic (ROC) plots to ascertain a model’s  
efficiency (DeLeo 1993).  ROC curves were 
created by plotting the sensitivity (i.e., the true-
positive rate) of a model on the ordinate against the 
value of (1 - specificity) (i.e., the false-positive rate) 
on the abscissa.  This curve used every possible 
threshold value that could be chosen to predict the 
probability of the presence of a particular species.  
The AUC is independent of the prevalence of 
each species.  A value of 1 represents a perfect 
discrimination between sites where a species is 
present versus those where it is absent, whereas 
a value of 0.5 indicates no significant difference 
between the 2 states (DeLeo 1993).  We chose the 
threshold through comparing an original species’ 
prevalence with the value of the least distance 
to the upper-left corner of the ROC curve.  If the 
value of the ROC curve was greater than the 
species prevalence, we used the value of the 
ROC curve as the threshold, otherwise we used 
the prevalence.  After threshold determination, we 
calculated the kappa value, sensitivity, specificity, 
and accuracy.  Finally, we used kappa and 
sensitivity tests as a key to determine the best final 
model for each species based on the assumption 
that correct species presence locations are more 
crucial than absence locations.

Biodiversity hotspot analysis

After deciding the threshold, the distribution 
probability for each species was differentiated 
between 1 (presence) and 0 (absence).  To derive 
the hotspot maps with the frequency histogram 
and probability density function approaches, we 
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used ensemble forecasting proposed by Araújo 
and New (2007).  We overlaid 14 potential species’ 
maps of each modeling method and defined 
the richest 5% of grids as hotspots of endemic 
bird species.  To derive the frequency histogram 
hotspot maps, we first derived the hotspot map 
for each predictive model, combined the 4 hotspot 
maps, and recognized 5 hotspot classes (from 
0 to 4 with 0 indicating no models predicted the 
grid as a hotspot; 1 indicating 1 model predicted 
the grid as a hotspot, and so forth).  To obtain 
the probability density function hotspot map, we 
calculated the probability of each grid by averaging 
the predictive values of the 4 models.  Known 
hotspots were extracted using the richest 5% of 
the survey grids.  We evaluated the power of these 
ensemble forecasting approaches by comparing 
them with known hotspots.  Finally, we evaluated 
the protection status of endemic bird hotspots by 
overlaying the boundaries of 5 national parks (Fig. 
1).

RESULTS

Comparisons of models

The 3 models (ANN, GARP, and LR) for 
each species all had AUC values of > 0.75, and 
the accuracies predicted by MDA were all > 72%, 
indicating good discrimination.  Examples of 
the predicted distributions of the Taiwan Yuhina 
(Yuhina brunneiceps), the Flamecrest (Regulus 
goodfellowi), and the Mikado Pheasant (Syrmaticus 
mikado), respectively representing common, 
uncommon, and rare species categories, using 
ANN, GARP, LR, and MDA were satisfactory 
compared to the actual data (Fig. 2).  The GARP 
and MDA models were more optimistic than the LR 
and ANN models.

Each model contributed to the prediction 
when evaluated using the kappa, sensitivity, 
accuracy, and specificity values of each species 
(Fig. 3).  The MDA model had lower assessment 
values among the 4 measures, except for 
sensitivity.  The LR and ANN models had similar 
trends for kappa, accuracy, and specificity.  
Measures by GARP were not the highest, but they 
remained fairly consistent.  The only exception 
was the case of the Taiwan Whistling Thrush 
(Myiophoneus insularis) which most models poorly 
predicted.  Sensitivity and specificity showed 
higher variability among the 4 models than did the 
kappa and accuracy values (p < 0.05).  In terms of 

the magnitude, the kappa and sensitivity measures 
highly varied (kappa, 0.15-0.59; sensitivity, 
0.10-0.97), whereas accuracy and specificity (all 
values > 0.5) were more stable.  Overall, the non-
linear models (GARP, LR and ANN) performed 
better than the linear model (MDA).

Across the 3 species categories, GARP 
showed consistently higher values for the 4 
measures than did the other models (Table 3).  
The accuracy values of the 4 models were > 0.7,  
bu t  o ther  assessment  measures  showed 
differences.  The GARP and MDA models offered 
the best abilities to predict a species’ presence.  
In contrast, the ANN did not produce satisfactory 
results because the model had a significantly lower 
sensitivity value (p < 0.05).  Based on kappa and 
sensitivity values, the models predicted common 
species better.  Rare species appeared to be 
modeled with greater accuracy than common and 
uncommon species.

When all data, i.e., 14 species from 4 models,  
were pooled, the predictive performance did not 
consistently vary with the prevalence available 
for modeling (Fig. 4).  We found no significant 
corre lat ions between the prevalence and 
assessment measures (kappa value, p = 0.42; 
accuracy, p = 0.62; sensitivity, p = 0.18; and 
specificity, p = 0.66).  The exception to this pattern 
occurred with the kappa value of common species, 
as the species prevalence and kappa values were 
significantly correlated (r = 0.33, p < 0.05).

Biodiversity hotspots

The predicted hotspots of Taiwan’s endemic 
bird species showed similar patterns and were 
mostly located along the Central Mountain Range, 
judging by the frequency histogram and probability 
density function approaches of ensemble fore-
casting (Figs. 5, 6).  All 5 maps derived from the 
frequency histogram approach showed relatively 
similar patterns (Fig. 5).  The extent of hotspots 
by MDA (3517 km2) was the highest, followed by 
ANN (2951 km2), LR (2641 km2), and GARP (2155 
km2).  Based on the combined hotspot map, GARP 
contributed most predictions in class 4 (25.1%); 
followed by LR (20.5%), ANN (18.3%) and MDA 
(15.4%).  For class 3, LR and GARP had higher 
contributions (34.6 and 34.5%, respectively) than 
MDA (23.2%) and ANN (22.1%).

The hotspot map generated by the probability 
density function indicated that areas at mid and 
high elevations had higher probabilities (Fig. 6).  
The cutoff probability to determine the hotspot 
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was 0.6.  The probability classes included 0.6-0.7 
(4.4%), 0.7-0.8 (1.1%), and 0.8-0.9 (0.16%).

Not all of the known hotspots were located 

in the higher class or probability region, although 
all known hotspots were located in the ensemble 
forecasting region predicted by the frequency 

Fig. 2.  Distribution maps for 3 selected species generated by 4 predictive models.

(a) Taiwan Yuhina (Yuhina brunneiceps), a common species

(b) Flamecrest (Regulus goodfellow), an uncommon species

(c) Mikado Pheasant (Syrmaticus mikado), a rare species

Species Known
Distributions

Artificial Neural
Network (ANN)

Genetic Algorithm
for Rule-set
Prediction (GARP)

Logistic
Regression (LR)

Multiple
Discriminant
Analysis (MDA)
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Fig. 3.  Comparison of 4 model performances (kappa, accuracy, sensitivity, and specificity) from the 4 predictive models (multiple 
discriminant function (MDA), logistic regression (LR), artificial neural network (ANN), and genetic algorithm for rule-set prediction (GARP)) 
for 14 (of 16) endemic bird species in Taiwan.
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histogram and probability density function.  With 
the frequency histogram approach, 31% of the 
known hotspots were located in class 4, 27% 
in class 3, 24% in class 2, and 18% in class 1.  
Nonlinear models predicted 68.9% of the known 
hotpots as possible hotspots while the linear model 
predicted 63%.  In the probability density function, 
the minimum probability of the known hotspots 

was 0.43 and the maximum was 0.86.  Eighty-
two percent of the known hotspots had predicted 
probabilities of > 0.6 (0.6-0.7, 42.3%; 0.7-0.8, 32%; 
0.8-0.9, 7.7%).  The known hotspots belonging 
to classes 3 and 4 all had higher predictive 
probabilities (0.6-0.9) while those of classes 2 and 
1 were 0.5-0.8 and 0.4-0.7 respectively.

Based on the frequency histogram approach, 
we identified classes 3 and 4 (i.e., probabilities of  
> 0.6 in the probability density function), with a 
total area of 1583 km2 in area, as hotspots.  Only 
25% of the hotspots are currently under protection 
by national parks.  Shei-Pa and Yushan National 
Parks contributed more than the others.  No 
hotspots occurred in Yangmingshan or Kenting 
National Parks.

The location of hotspots showed distinct 
environmental characteristics (Table 4).  Among 
the environmental variables we examined, 
elevation, mean NDVI, annual mean temperature, 
road density, and forest density were significant 
factors determining species distributions.  Hotspots 
were located at mid-elevations (with peaks at 
around 1844-2308 m), and had moderate mean 
temperatures (11-14°C), higher mean NDVI 
(0.4-0.6), little human disturbance, and high forest 

Table 3.  Statistics of 4 model evaluation measures (kappa, accuracy, 
sensitivity, and specificity) and the area under the receiver operating 
characteristic curve (AUC) for 3 different species categories (common, 
uncommon, and rare species) by 4 predictive models: multiple 
discriminant function (MDA), logistic regression (LR), artificial neural 
network (ANN), and genetic algorithm for rule-set prediction (GARP).  
Averages for each species category are presented

Species category and model Mean value

Kappa Accuracy Sensitivity Specificity AUC

Common species (n = 7)
MDA 0.32 0.72 0.91 0.70
LR 0.43 0.88 0.55 0.93 0.90
ANN 0.44 0.89 0.53 0.94 0.88
GARP 0.42 0.79 0.89 0.80 0.88

Uncommon species (n = 5)
MDA 0.21 0.82 0.83 0.82
LR 0.30 0.90 0.81 0.90 0.92
ANN 0.25 0.90 0.58 0.91 0.87
GARP 0.30 0.87 0.87 0.87 0.90

Rare species (n = 2)
MDA 0.10 0.89 0.43 0.89
LR 0.20 0.91 0.81 0.91 0.93
ANN 0.15 0.91 0.44 0.92 0.79
GARP 0.20 0.91 0.84 0.91 0.93

Fig. 4.  Relation between kappa and data prevalence (%) in 4 
predictive models for 14 (of 16) endemic bird species in Taiwan.
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Fig. 5.  Biodiversity hotspot maps for 14 (of 16) endemic bird species in Taiwan.  Maps in the left column are hotspots generated by 
each predictive model.  On the right shows the overall hotspot map by the frequency histogram approach, i.e., overlaying all 4 hotspot 
maps.  Five classes were identified: 0, no hotspot predicted; 1, predicted by only 1 model; 2, predicted by 2 models; 3, predicted by 3 
models; and 4, predicted by 4 models.
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cover.  When comparing different hotspot classes, 
all variables, except for road density, had identical 
patterns of decreasing standard deviations from no 
model to all 4 models predicting hotspots.

DISCUSSION

During the past decade, species predictive 
models have matured and become a useful tool 
for many applications (e.g., Corsi et al. 1999, 
Margulesand Pressey 2000, 2007, Miller et al. 
2004, Rodríguez et al. 2007).  We followed the 
ensemble forecasting approach (Araújo and New 
2007) to define biodiversity hotspots by combining 
4 hotspot maps generated by each predictive 
model.  As a general rule, an area identified as 
a biodiversity hotspot by several models may 
have greater credibility than that identified by a 
single model.  However, our results only partially 
supported this statement.  Our results indicated 
that areas with higher frequencies or higher 
probabilities were correlated with known hotspot 
locations, but a few of the hotspots were located 
in low-frequency or -probability regions.  Although 
comparing different predictive models can be 
a useful conservation approach to determine 
biodiversity hotspots, ensemble forecasting 
approaches should be applied with caution when 
locating biodiversity hotspots.  We agree with the 
warning made by Araújo and New (2007) that 
ensemble forecasting approaches still require 
strong support of the better individual predictive 
models.

Despite variations, the 4 predictive models 
were all workable, with the non-linear models 
having better predictive power than the linear 
one.  Based on kappa and sensitivity values, and 
the consistency of these measurements, GARP 
was a better choice in our situation using a fine 
resolution (1 × 1 km) grid.  Several studies (e.g., 
Feria and Peterson 2002, Stockman et al. 2006) 
also reported that GARP had higher predictive 
capabilities under diverse circumstances.

Taiwan’s endemic bird species richness 
patterns might be a proxy for the overall breeding 

Fig. 6.  Biodiversity hotspot maps for 14 (of 16) endemic bird 
species in Taiwan created by the probability density function 
approach.
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Table 4.  Mean (± 1 standard deviation; SD), minimum, and maximum of 5 environmental variables 
characterizing Taiwan’s endemic species hotspots generated by the frequency histogram approach

Classes 1-4 (n = 5894) Classes 2-4 (n = 3246) Classes 3 and 4 (n = 1583) Class 4 (n = 541)

Variable Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

Annual mean 
temperature (°C)

13.6 (2.2) 7 20.3 13.1 (1.7) 8.3 18.7 12.9 (1.3) 9.3 16.7 12.8 (1.1) 10.2 16.2

Elevation (m) 1917 (437.8) 417.3 3063.6 2037 (300.4) 922.9 2714.6 2076 (232.2) 1477.8 2617.7 2081 (202) 1569.7 2588.6
Forest density (%) 98 (5.1) 3.6 100 98.2 (3.8) 22.9 100 98.5 (2.9) 67.2 100 98.7 (2.2) 84.5 100
Road density (m/ha) 1.8 (5.5) 0 61.9 1.9 (5.6) 0 39.5 2.3 (6.1) 0 39.5 2.74 (6.62) 0 36.0
Mean NDVI 0.44 (0.075) 0.16 0.63 0.45 (0.074) 0.21 0.62 0.45 (0.073) 0.20 0.62 0.45 (0.072) 0.27 0.63
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bird species richness pattern (Nieh 1999, Koh et 
al. 2006).  The significant environmental variables 
in our hotspot analysis were similar to variables 
correlated with breeding bird species richness in 
other studies (Lee et al. 2004, Koh et al. 2006).  
Both breeding bird and endemic species hotspots 
showed that elevations around 2000 m had the 
highest species richness.  These results suggest 
that distribution patterns found for endemic species 
might be a surrogate for the entire 150 breeding 
bird species of Taiwan, thus reducing the possible 
time and energy of collecting distribution data of all 
breeding bird species.  Finally, Nieh (1999), who 
used 2 km grid data and a regression approach 
to derive the breeding bird hotspots in Taiwan, 
showed similar hotspot locations to our predictions.  
Thus, we hypothesize that Taiwan’s endemic bird 
species hotspots might be a good indicator of 
avian biodiversity representing all breeding bird 
species.

The issue of using presence-absence data 
in ecology remains a concern.  Our findings 
indicated that models using presence-only data 
provided better predictions than those using both 
presence and absence data.  One of the possible 
reasons is that the presence of a target species 
can often be confirmed at a location, but it is 
generally impossible to confirm the absence even 
with our 1 km2 data.  Due to the highly complex 
topography in Taiwan, there are many areas 
that are inaccessible.  If an observed absence 
was ‘presence-not detected’ datum which has 
sometimes been used to acknowledge that ‘non-
detection’ does not equate to species absence, 
this kind of absence data can also confuse the 
biological and sampling processes (Field et al. 
2005, MacKenzie 2005a b).  Thus, determining a 
suitable scale and checking survey data quality are 
necessary for predicting species distributions.

Al though presence-absence data can 
provide more information for model building, our 
results showed that these models provided little 
additional improvement.  When neighboring grid 
cells had similar environments but different results 
for species presence/absence, these presence-
absence models could not  address these 
differences.  Such a condition of neighboring grid 
cells creates a falsehood in model building and 
decreases the accuracy.

One important  caveat of  construct ing 
environmental variables is their correlations to 
species habitat requirements.  If the variables do 
not represent a species’ habitat requirements, the 
prediction might not be adequate.  For example, 

the Taiwan Whistling Thrush is a common and 
widespread bird with sufficient data for model 
building, but our model performance was not 
satisfactory.  One of the possibilities is that the 
current environmental variables do not represent 
the key predictors for this species.  The Taiwan 
Whistling Thrush occurs in riparian zones, but 
we had few environmental variables to represent 
this habitat type, and even with finer-scale data, 
we could not resolve the issue.  To avoid similar 
conditions, future predictive model need to be 
designed with appropriate environmental variables.

We simul taneously used 2 threshold-
determining approaches for determining the 
presence/absence of a species once the models 
generated the probabilities.  Our rules of defining 
thresholds referred to the ROC plot-based and 
prevalence approaches.  Liu et al. (2005) showed 
that these 2 threshold-determining approaches 
used independently were relatively better than 
other approaches.  Although the combination of 
2 threshold-determining approaches used here 
resulted in lower assessment measures due to 
more-serious restrictions, we still expected that the 
predicted presence sites should be more accurate.

Finally, the LR, GARP, ANN, and MDA 
models are feasible for use in modeling species 
distributions.  Although they have some limitations, 
we suggest that using a combination approach 
to identify common features and conservation 
priorities of biodiversity hotspots is still a reliable 
and better tool for the efficient use of conservation 
management.
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