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Kui-Ching Hsu, Nien-Tsu Shih, I-Hsun Ni, and Kwang-Tsao Shao (2009) Speciation and population structure 
of three Trichiurus species based on mitochondrial DNA.  Zoological Studies 48(6): 835-849.  This study 
integrated most available genetic data of the “Trichiurus lepturus complex” and examined its species status and 
population structure using mitochondrial (mt) DNA sequences.  Both the maximum-parsimony and Neighbor-
joining distance trees supported 3 clear branches at 100% bootstrap value support.  Due to a decisive genetic 
difference based on mtDNA cytochrome b, cytochrome oxidase subunit I, and 16S ribosomal RNA with the 
Kimura 2 parameter or maximum composite likelihood models, all historically confusing “T. lepturus complex” 
morphs were suggested to be 3 separate species: T. japonicus, T. lepturus, and T. sp. 2.  This study suggested 
that T. lepturus from the Indo-Pacific in previous studies and T. sp. 2 are the same species.  During the Miocene, 
these 3 Trichiurus species diverged from each other.  According to the mtDNA phylogeographical patterns 
presented here, the vicariance events important to the speciation or structure of the “T. lepturus complex” were: 
(1) a warming event occurring around Japan during the middle Miocene, (2) cold water upwelling close to the 
tip of South Africa, (3) archipelagoes of the West Pacific, (4) the southeastern coast of Taiwan, (5) cyclical 
glacial periods, (6) the Isthmus of Panama, (7) the 2500 km long stretch of deep water separating the eastern 
and western Atlantic, and (8) freshwater plumes of the Amazon River.  Based on current data, the East Indies 
Triangle of Indo-West Pacific was either a refuge or a colonization source for T. sp. 2.  
http://zoolstud.sinica.edu.tw/Journals/48.6/835.pdf
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Hairtail fish (Trichiuridae) inhabit continental 
shelves and slopes of the world (Nelson 1994), 
and they are important commercial marine fishes 
(FAO 2004).  In the family Trichiuridae, Trichiurus 
lepturus Linneaus, 1758 is considered to be a 
“variable species” (Tucker 1956).  Nakamura and 
Parin (1993), based on morphological differences 
in pectoral and tooth patterns, estimated the 
existence of only 3 valid species: T. lepturus L., T. 
auriga Klunzinger, 1884, and T. gangeticus Gupta, 
1966.  The species T. lepturus was recognized as 
valid at all times by all ichthyologists, but the other 
2 species were less discussed.  Trichiurus lepturus 
(type locality: off South Carolina, USA), however, 

has a very broad geographical distr ibution 
and is known to cover tropical and temperate 
waters throughout the world.  Trichiurus auriga 
and T. gangeticus have restricted geographical 
distributions; the former is distributed in Red Sea, 
Indian Ocean, and Timor, and the latter is confined 
to the east coast of India.  However, because of its 
similar body appearance and silvery coloration as 
well as its unresolved taxonomy, until now, as many 
as 17 nominal species of the genus Trichiurus 
have been reported in the literature, but only 9 are 
valid species (Table 1) (Nakamura and Parin 1993, 
Wang et al. 1995, Eschmeyer 1998, Burhanuddin 
et al. 2002).  In the taxonomic history of Trichiurus, 
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most nominal species were considered synonyms 
of T. lepturus.  In recent studies, 2 species groups 
within Trichiurus were generally recognized: the 
long-tailed hairtail, “T. lepturus complex,” with the 
anal opening at a vertical position of the 38th-
41st dorsal fin rays; and the short-tailed hairtail, 
“T. russelli complex,” with the anal opening at a 
vertical position of the 34th-35th dorsal fin rays 
(Burhanuddin et al. 2002).  Taxonomic identification 
within the “T. lepturus complex” has long been 
confusing.

In the northwestern Pacific, T. japonicus 
Temminck and Schlegel, 1844 used to be included 
in T. lepturus and was arguably treated as a junior 
synonym (Tucker 1956, Nakamura and Parin 1993, 
Nelson 1994).  Nevertheless, T. japonicus from the 
East China and Japan Seas was reported to have 
higher numbers of dorsal fin rays and vertebrae 
(Lee et al. 1977, Nakabo 2000), and was recently 
regarded as a valid species after recent work by 
Chakraborty et al. (2006a) and Tzeng et al. (2007), 
who provided both traditional morphometric data 
and molecular data of mtDNA cytochrome (Cyt) 
b and 16S ribosomal (r) RNA genes.  Wang et 
al. (1993) examined isozymes in samples over 
an extensive geographic range including the 
East and South China Seas and concluded that 
3 species of T. brevis Wang and You, 1992, T. 
haumela Forsskål, 1775, and T. nanhaiensis Wang 
and Xu, 1992 exist.  Trichiurus brevis is one of 
the short-tailed hairtails.  Trichiurus haumela was 

considered by Wang et al. (1995) to be equivalent 
to T. japonicus; and T. nanhaiensis was described 
as a new species.  Among them, T. nanhaiensis 
is less well known because the paper was written 
in Chinese and published in a Chinese journal; 
as a result, few ichthyologists challenged the 
validity of that species.  A similar study was done 
by Chakraborty et al. (2006a), who treated their 
study materials of Trichiurus species as T. lepturus 
(Atlantic), T. japonicus (Pacific), and Trichiurus sp. 
2 (Pacific).  The last one was given no binominal 
name because the work lacked diagnostic 
morphological characters.

In Taiwan, Lee et al. (1977) proposed that T. 
lepturus and T. japonicus are 2 valid species based 
on the distinguishable external morphology of 
various body ratios.  Subsequently, Lin and Shen 
(1986) and Lee et al. (1993) considered these 2 
species to be the same based on minor differences 
in morphometric measurements and the high 
genetic identity shown in isozyme patterns.  
However, experienced hairtail fish anglers have 
voiced suspicions that more than 1 species within 
the “T. lepturus complex” occur in Taiwan.  Recent 
studies based on a genetic analysis and growth 
patterns found that there are 3 species within the “T. 
lepturus complex” in Taiwanese waters but did not 
give them accurate nomination since there were 
no applicable diagnostic keys, and the authors 
treated their findings of 3 Trichiurus groups as T. 
lepturus, T. nanhaiensis, and T. cf. nanhaiensis 

Table 1.  Nomenclature history of Trichiurus species

Scientific name Nomenclature Valid names Status

T. auriga Klunzinger, 1884 T. auriga rare
T. gangeticus Gupta 1966 T. gangeticus rare
T. lepturus Linnaeus, 1758 T. lepturus largehead
T. haumela Forsskal, 1775 T. lepturus largehead
T. nitens Garman, 1899 T. lepturus largehead
T. coxii Ramsay and Ogilby, 1887 T. lepturus largehead
T. malabaricus Day, 1865 T. lepturus largehead
T. argenteus Shaw, 1803 T. lepturus largehead
T. lajor Bleeker, 1854 T. lepturus largehead
T. japonicus Temminck and Schlegel, 1844 T. japonicus largehead
T. margarites Li 1992 T. nanhaiensis largehead
T. nanhaiensis Wang and Xu 1992 T. nanhaiensis largehead
T. australis Chakraborty, Burhanuddin and Iwatsuki 2005 T. australis short-tailed
T. minor Li 1992 T. brevis short-tailed
T. brevis Wang and You 1992 T. brevis short-tailed
T. nickolesis Burhanuddin and Iwatsuki 2003 T. nickolesis short-tailed
T. russelli Dutt and Thankam 1967 T. russelli short-tailed
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(Shih 2004, Hsu et al. 2007).  However, clear 
species identification for fishery purposes has 
been the subject of a major Food and Agriculture 
Organisation (FAO) program since the 1960s.

Mitochondrial (mt)DNA analyses using 
conserved genes l ike 16S rRNA, Cyt b ,  or 
cytochrome oxidase subunit I (COI) have emerged 
as powerful approaches to answer questions 
of fish taxonomy, species identification, and 
population genetics (e.g., Hebert et al. 2003, Guo 
et al. 2005, Chen et al. 2007, Itoi et al. 2007).  In 
the present study, we used mtDNA sequences that 
included COI, Cyt b, and 16S rRNA genes to study 
inter- and intraspecific variations.  We attempted 
to use sequence data of the “T. lepturus complex” 
to address the following questions: (1) Are all of 
the current species valid?; (2) What biogeographic 
barriers are likely to have caused speciation 
between species?; (3) What degree of genetic 
structure exists within species and what can it 
tell us about the history of populations?; and (4) 
How do the observed phylogeographical patterns 
compare to those of other marine organisms?

MATERIALS AND METHODS

Species identification

The generic diagnosis of the genus Trichiurus 
followed Nakamura and Parin (1993).  Trichiurus 
sp. 2 (hereafter T. sp. 2) was identified following 
Nakabo (2002), with confirmation of the yellow 
dorsal fin color when fresh and the bottom of the 
oral cavity being light-colored.  The identification 
of T. japonicus followed Li (1992), Nakabo (2002), 
and Burhanuddin (2003), with the caudal peduncle 
length (mean 52% of the preanal length (PL)) 
longer than those of T. sp. 2 (mean 33% of the 
PL) and T. lepturus (mean 40% of the PL), the 
bottom of the oral cavity being dark-colored, and 
the ground color of the dorsal fin being whitish 
when fresh.  Trichiurus lepturus is very similar 
to T. japonicus, and it was identified based on 
Burhanuddin (2003), with a whitish dorsal fin and 
a smaller caudal peduncle length than that of T. 
japonicus.  To make our materials comparable to 
those of Chakraborty et al. (2006a), the sequences 
of 16S rRNA from samples of T. japonicus 
(AM779552-60), T. lepturus (AM779563-5), and 
T. sp. 2 (AM779561-2) were obtained, and it 
turned out that the corresponding materials were 
equivalent in the species identification.

Sampling and sequence analyses

Samples of the “T. lepturus complex” were 
obtained from longliners and trawlers operating 
off the Taiwanese coasts.  Samples obtained were 
categorized into 4 hydrographic areas: the Taiwan 
Strait, Pacific Ocean, South China Sea, and East 
China Sea (Fig. 1A).  Fresh specimens were 
placed on ice and transported to the laboratory.  
Total genomic DNA was extracted from a muscle 
sample of each fish using a standard phenol/
chloroform method (Sambrook et al. 1989).  
Polymerase chain reaction (PCR) amplification 
of the partial Cyt b fragments subsequently used 
primers Glu (5’-CGAAGCTTGACTTGAArAACCA
yCGTTG-3’) and Cyt (5’-GGCAAATAGGAArTATC
ATTC-3’) (Hsu et al. 2007).  Amplification of 16S 
rRNA was carried out using the following primers: 
L2510 (5’-GCCTGTTTAACA AAAACAT-3’) and 
H3059 (5’-CGGTCTGAACTCAGATCACGT-3’) 
(Miya and Nishida 1996).  The COI gene was 
amplified using the universal primers for fish DNA 
barcoding: FishF1 (5’-TCAACCAACCACAAAGAC
ATTGGCAC-3’) and FishR1 (5’-TAGACTTCTGGG
TGGCCAAACAATCA-3’) (Ward et al. 2005).  Each 
100 μl of the PCR contained 10 ng template DNA, 
10 μl 10x reaction buffer, 10 μl MgCl2 (25 mM), 10 μl 
dNTP mix (10 mM), and 10 pmol of each primer.  
The reaction was programmed on an MJ Thermal 
Cycler (MJ Research, Inc. Ramsey, Minnesota, USA) 
as 1 cycle at 94°C for 4 min; 33 cycles at 94°C for 
30 s, 55°C for 30 s, and 72°C for 45 s; and a final 
extension at 72°C for 10 min.  PCR products were 
purified by electrophoresis in a 1.0% agarose gel 
using 1x TAE buffer.  The gel was stained with 
ethidium bromide, and the desired DNA band was 
cut and eluted using an agarose gel purification 
kit (QIAGEN, Valencia, CA, USA).  Purified DNAs 
were sequenced on both strands on an Applied 
Biosystems 377 automated sequencer (division of 
Perkin-Elmer, Foster City, CA, USA).

Sequences of mtDNA haplotypes were 
deposited in GenBank with the following accession 
numbers: T. lepturus, AM910645-9, T. japonicus, 
AM910798-817, and T. sp. 2, AM921685-96 for 
Cyt b; T. lepturus, AM779563-5, T. japonicus, 
AM779552-60, and T. sp. 2, AM779561-2 for  
16S rRNA; and T. lepturus ,  FM998057, T. 
japonicus, FM998055-6, and T. sp. 2, FM998058-9 
for COI.  In order to determine the species 
status of the “T. lepturus complex” in the world, 
this study also integrated genetic data from 
previous studies (accession nos.: DQ364146-50, 
AB197142-9, AB125746, AB198977-82, and 
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AB212875-88; Chakraborty et al. 2006a b, 
Chakraborty and Iwatsuki 2006, Tzeng et al. 2007).  
Eupleurogrammus muticus (16S rRNA: AY212325) 
and Trichiusus brevis (Cyt b: AM910640-4; 16S 
rRNA: DQ643037) obtained from GenBank were 
used as outgroups.  The obtained sequences were 
edited and aligned using the BioEdit software 
(Hall 1999).  First, we used COI as DNA barcodes 
to identify the fish species, so we followed the 
methods of DNA barcoding of Australia’s fish 
species (Ward et al. 2005).  Pairwise evolutionary 
distances among the haplotypes were calculated 
following Kimura’s 2-parameter (K2P) model 
(Kimura 1980) and were used to obtain a 
Neighbor-joining (NJ) phylogenetic tree (Saitou 
and Nei 1987) with MEGA vers. 4 (Tamura et al. 
2007).  Second, we also used Cyt b as another 
molecular marker to identify the genetic diversity 
within the “T. lepturus complex”.  Pairwise genetic 

divergences among haplogroups were calculated 
following the K2P model, and these were used 
to obtain an NJ tree with a maximum composite 
likelihood distance model using MEGA 4.

Finally, we used 16S rRNA sequences to 
confirm the phylogroups, by displaying COI or 
Cyt b, and the genetic structure existing within 
species.  DNA substitutions were determined to 
be the most appropriate models for the analyses 
by applying MODELTEST (vers. 3.06, Posada 
and Crandall 1998).  The best model selected 
with the Akaike information criterion (AIC) was the 
GTR.  Haplotype genealogies were generated by 
an NJ and maximum-parsimony (MP) analysis 
with DAMBA vers. 5.0.37 (Xia and Xie 2001) and 
MEGA 4.  Bootstrapping was performed with 500 
replicates.  The number of mutations between 
DNA haplotypes via pairwise comparisons was 
calculated using MEGA 4.  We also constructed 

Fig. 1.  (A) Map illustrating the locations of samples identified as Trichiurus sp. 2 (gray), T. japonicus (white), and T. lepturus (black), 
and their frequencies in Taiwanese waters.  Trichiurus lepturus is distributed in southern and eastern Taiwan, T. japonicus is distributed 
in northern and western Taiwan, and T. sp. 2 is distributed in western and southern Taiwan.  (B) After molecular identification, T. lepturus 
is distributed on the west coast of Africa, western Atlantic coast, and West Pacific, T. japonicus is distributed in various parts of Japan 
and Taiwan, and T. sp. 2 is distributed in Indo-Pacific waters.
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a haplotype network with the aid of MINSPNET 
(Excoffier and Smouse 1994) as it seemed to give 
similar or better results.  The genetic structures 
of species and populations were tested using an 
analysis of molecular variance (AMOVA) approach 
in Arlequin (vers. 2.000; Schneider et al. 2000).  In 
order to compare our data with previous studies, 
we calculated pairwise genetic divergences among 
haplogroups calculated following the K2P and 
maximum composite likelihood models.

The MDIV program (Nielsen and Wakeley 
2001) was employed to estimate and test different 
phylogeographical scenarios.  MDIV uses a 
Markov chain Monte Carlo (MCMC) method within 
a Bayesian framework to estimate the posterior 
distribution of theta (θ = 2Neu), the migration rate 
per generation (M = Nem; m, migration rate), 
and the divergence time between populations 
(equations adjusted for mtDNA).  The program 
also estimated the expected time to the most 
recent common ancestor (TMRCA) for all sequences 
in the samples.  Five runs were performed with 5 × 
106 cycles each for the MCMC and a burn-in time 
of 10% as recommended by the program manual.

RESULTS

Phylogenetic analyses

In Taiwan, 16 specimens were used to 
identify species by COI, and 5 haplotypes were 
detected.  The sequence analysis of the partial 
COI gene (642 bp) revealed a total of 73 variable 
nucleotide sites; all of which were parsimoniously 
informative.  The NJ phylogenetic analyses 
with the K2P model revealed a phylogeny that 
was consistent with 3 reciprocally monophyletic 
species lineages, i.e., T. lepturus, T. japonicus, 
and T. sp. 2 (Fig. 2A).  The pairwise sequence 
divergences between COI sequences of Trichiurus 
species ranged 0.115-0.135, with an average of 
0.127 (Table 2); whereas the divergences within 
species ranged 0.000-0.003.  In the Cyt b data, 
54 specimens were used, and 37 haplotypes 
were detected.  The sequence analysis of the 
partial Cyt b gene (606 bp) revealed a total of 
203 variable nucleotide sites, 166 of which were 
parsimoniously informative.  The NJ phylogenetic 
analyses with the maximum composite likelihood 
model revealed a phylogeny that was also 
consistent with 3 reciprocally monophyletic lineages 
in Taiwanese waters, i.e., T. lepturus, T. japonicus, 
and T. sp. 2 (Fig. 2B).  The sequence divergence 

of Cyt b within T. sp. 2 ranged 0.007-0.019; and 
the divergences within T. japonicus and T. lepturus 
ranged 0.005-0.027 and 0.001-0.010, respectively.  
Sequence divergences with the K2P model among 
the 3 species, on the other hand, were significantly 
high; at 0.183 between T. sp. 2 and T. japonicus 
and 0.181 between T. sp. 2 and T. lepturus (Table 
2).  The interspecific divergences, estimated using 
the maximum composite likelihood model, were 
also similar to that estimated with the K2P model 
(Table 2).

In order to determine species status within 
the “T. lepturus complex” in the world, this study 
also integrated genetic data from previous 
studies (Chakraborty et al. 2006a b, Chakraborty 
and Iwatsuki 2006, Tzeng et al. 2007) and this 
study.  Totally, 100 specimens were used, and 
87 haplotypes were detected.  The sequence 
analysis of the partial 16S rRNA gene (411 bp) 
revealed a total of 89 variable nucleotide sites, 44 
of which were parsimoniously informative.  Both 
the MP (with a CI excluding the uninformative 
characters of 0.80 and an RI of 0.95) and NJ 
(with the K2P and GTR models) phylogenetic 
analyses were based on 16S rRNA (Figs. 3, 
4).  The phylogenetic trees of 16S rRNA clearly 
indicated that T. sp. 2, T. japonicus, and T. lepturus 
are reciprocally monophyletic groups (Figs. 3, 
4).  Trichiurus lepturus populations from the Indo-
Pacific (Chakraborty et al. 2006b) were clustered 
into T. sp. 2.  Trichiurus lepturus populations from 
West Africa and the West Atlantic (Chakraborty 
and Iwatsuki 2006) were clustered into T. lepturus 
in Taiwanese waters (Fig. 4).  The sequence 
divergence of 16S rRNA within T. sp. 2 ranged 
0.001-0.010; whereas the ranges were 0.000-0.001 
and 0.001-0.012 within T. japonicus and T. 
lepturus, respectively.  However, the sequence 
divergence among the 3 species was significantly 
high at 0.055 between T. sp. 2 and T. japonicus 
and 0.067 between T. sp. 2 and T. lepturus (Table 
2).  The current data suggest that T. lepturus from 
the Indo-Pacific (Chakraborty et al. 2006b) and T. 
sp. 2 are the same species; and T. lepturus from 
the West Atlantic (Chakraborty et al. 2006a b), 
West Africa (Chakraborty and Iwatsuki 2006), and 
Pacific are the same species.  Finally, we suggest 
that T. lepturus occurs in the Pacific and Atlantic, 
T. sp. 2 in the Indian Ocean, East China Sea, and 
South China Sea (Indo-Pacific), and T. japonicus 
in the Japan Sea and East China Sea (Fig. 1B).
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Population structure and genetic diversity

Within the T. lepturus  l ineage, 3 sub-
lineages were identified which corresponded to 
3 geographic regions: I in Taiwan (Pacific), II in 
the West Atlantic, and III of West Africa (Fig. 4).  
The sequence divergences based on 16S rRNA 
within these 3 sub-lineages ranged 0.001-0.003; 
among the 3 sub-lineages, the ranges were 
0.013 between West  Afr ica and the West 
Atlantic, 0.015 between the West Atlantic and the 

Pacific, and 0.016 between West Africa and the 
Pacific (Table 2).  The topology of the minimum 
spanning network of T. sp. 2 exhibited significant 
geographical structuring of 4 mtDNA clades.  Clade 
I contained 3 populations belonging to regions in 
the East and South China Seas (Pacific), which 
included Hainan I. (China), Taiwan, and Japan.  
Clade II was restricted to the East Indies Triangle; 
clade III was restricted to the East Indian Ocean; 
and clade IV was restricted to the West Indian 
Ocean (Fig. 5A).  The East Indies Triangle (clade 

Fig. 2.  Trees generated from Neighbor-joining (NJ) method with the Kimura 2-parameter (K2P) model based on cytochrome oxidase 
subunit I (COI) sequences (A) and based on cyclooxygenase (Cyt) b sequences with maximum composite likelihood distance (B).  
Numbers on the major branches are percentages of bootstrap values obtained with 500 replicates.
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II) formed an interior clade linked to the other 3 
clades.  Based on current data, T. sp. 2 uses the 
East Indies Triangle of the Indo-West Pacific as 
either a refuge or a source of colonization.  The 
AMOVA indicated that the regional structuring of 
the 4 clades explained much of the total genetic 
variance.  The large sequence divergences among 
clades indicated that they have been isolated 
from each another for a considerable amount of 
time.  Sequence divergences within these 4 clades 
ranged 0.001-0.003, whereas among the 4 clades, 
the ranges were 0.017 between the West Indian 
and East Indian Oceans, 0.007 between the West 
Indian Ocean and the East Indies Triangle, and 
0.012 between the West Indian and West Pacific 
Oceans (Table 2).

The hierarchical analyses of sequence 
differences with the AMOVA indicated significant 
differences among species (FST = 0.974).  The 
results of the AMOVA also found that a substantial 
proportion of molecular variance was attributable 
to differences among populations (FST = 0.814 
for T. sp. 2; FST = 0.930 for T. lepturus; and FST = 
0.630 for T. japonicus) and to differences among 
populations within regions (FSC = 0.470 for T. sp. 2; 
FSC = 0.520 for T. lepturus; and FSC = 0.560 for T. 
japonicus).  The relative contribution of differences 
among regions was small for T. japonicus (FCT = 
0.160), but large for T. sp. 2 and T. lepturus (FCT = 
0.648 and 0.854, respectively).

Fig. 3.  (A) Phylogenetic tree produced by the maximum-parsimony (MP) analysis using MEGA 4 (CI excluding the uninformative 
characters = 0.80, RI = 0.95) and (B) generated from Neighbor-joining method with the GTR model using DAMBE based on partial 16S 
rRNA with Eupleurogrammus muticus (Trichiuridae) as the outgroup taxon.  Numbers above the branches indicate bootstrap values 
based on 500 replicates.
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Coalescence analyses and divergence times

The mtDNA Cyt b and 16S rRNA evolutionary 
rates in Trichiurus were not estimated because 
there was no calibration point.  Therefore, 
estimates of T were converted to real time, 
assuming a range of neutral mutation rate 
estimates for fishes of 0.91% and 0.23% sequence 
divergence per 106 yr for Cyt b and 16S rRNA, 
respectively (Bermingham et al. 1997, Martin 
and Bermingham 1998, Alves-Gomes 1999, He 
et al. 2004, Guo et al. 2005, Tzeng et al. 2007).  
Based on the coalescent estimates of divergence 
times among species, the gene divergence (when 
haplotypes first began to differentiate) took place 
between (15.23 and 9.88) × 106 yr before the 
present (Ma BP).  The 3 species became isolated 
from each other between 11.57 and 8.83 Ma BP.  
Among the 4 disjoined clades (populations) in the 
network within T. sp. 2, gene divergence took place 
between 5.05 and 1.90 Ma BP, and they became 

isolated from each other between 4.32 and 1.28 
Ma BP.  Within T. lepturus, gene divergence took 
place between 2.97 and 2.74 Ma BP, and they 
became isolated from each other between 3.23 
and 2.26 Ma BP (Table 3).  The large disparity 
in estimates of TMRCA (gene divergence) versus 
population divergence (T) suggest that gene flow 
had begun to obscure the phylogeographical 
structure among populations (Table 3).

DISCUSSION

Taxonomic status

The 1st aim of this study was to examine 
the species status of the “T. lepturus complex.”  
Systematists attempt to describe variations among 
taxa as well as historical relationships among them.  
Johns and Avise (1998) calculated and compared 
levels of Cyt b sequence divergence with the K2P 

Fig. 4.  Tree generated from the Neighbor-joining method with Kimura 2 parameter (K2P) model based on partial 16S rRNA with 
Trichiurus brevis as the outgroup taxon.  Numbers above the branches indicate bootstrap values based on 500 replications.
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model between sister species, congeneric species, 
and confamilial genera within and across major 
vertebrate taxonomic classes.  The divergence 
between species among 81 confamilial fish genera 
averaged 0.120 (Johns and Avise 1998).  Ward et 
al. (2005) and Hsu and Shao (2007) calculated the 
level of COI sequence divergence with the K2P 
model within species, genera, families, orders, and 
classes from Australian and Taiwan marine fishes, 
respectively, and suggested that the divergence 
between species within a genus averaged 0.099.  
In the present study, 3 major mtDNA clades, 
corresponding to the nominal species of T. sp. 2, 
T. japonicus, and T. lepturus, were discovered.  
The interspecif ic divergences of COI were 
0.115-0.135 and those based on Cyt b with the 
K2P and maximum composite likelihood models 
were 0.168-0.183 and 0.165-0.183, respectively 
(Table 2).  Moreover, sequence divergences of 
16S rRNA among the 3 Trichiurus species were 
0.044-0.067 (Table 2).  The degree of sequence 
divergence among the 3 species was comparable 
to those of congeneric species in other fish groups.  
Among the species of Trachurus (Carangidae), 
the interspecific 16S rRNA divergences of Tra. 
mediterraneus to Tra. pictatus and Tra. trachurus 
was found to be 0.018 and 0.015, respectively 
(Karaiskou et al. 2003).  The 16S rRNA sequence 
divergence between Apogon cyanosoma and 
A. properuptus (Apogonidae) was found to be 
about 0.054 (Mabuchi et al. 2003).  According to 

the interspecific sequence divergences based on 
the COI, Cyt b, and 16S rRNA described above, 
the divergences estimated in this study were 
much larger than the estimates of intraspecific 
divergence in other species.  Therefore, these 
large sequence divergences and well-supported 
phylogeny suggest that the 3 major clades within 
the “T. lepturus complex” are 3 distinct species: T. 
sp. 2, T. japonicus, and T. lepturus.

Chakraborty et al. (2006b) suggested that 
since haplotypes of T. lepturus from the Indo-
Pacific and West Atlantic were in separate clusters, 
the T. lepturus populations from these 2 geographic 
locations were genetically distinct.  The genetic 
results obtained by Chakraborty et al. (2006b) 
clearly showed that the 2 regional populations of 
T. lepturus (West Atlantic and Indo-Pacific) were 
represented by at least 2 species.  Likewise, 
Chakraborty and Iwatsuki (2006) examined genetic 
variations among species from various localities 
and indicated that there were 3 major clades within 
the “T. lepturus complex”.  The Atlantic clade was 
comprised of 2 separate subclades containing 
haplotypes of West Africa and the West Atlantic, 
whereas the Indo-Pacific clade and T. japonicus 
formed separate lineages.  Chakraborty and 
Iwatsuki (2006) suggested that the morphotypes 
of T. lepturus obtained from the West African coast 
were genetically distinct and probably represented 
a separate species.  The low sequence divergence 
between the West African and West Atlantic types 

Table 2.  Samples size (for cytochrome (Cyt) b, 16S rRNA, and cytochrome oxidase subunit I (COI), in 
parentheses) and average sequence divergence with the Kimura 2 parameter (K2P) model (bold) and 
maximum composite likelihood model among Trichiurus species or populations for Cyt b (above the 
diagonal), 16S rRNA (below the diagonal), and COI (above the diagonal, in italics)

T. lepturus Trichiurus sp. 2

T. japonicus W. Africa Pacific E. Indian Indies Triangle Pacific

T. japonicus 
(23/21/6)

0.168 ± 0.017
0.165 ± 0.016
0.115 ± 0.032

0.183 ± 0.016
0.183 ± 0.017
0.132 ± 0.036

T. lepturus
 (10/32/4)

0.044 ± 0.011
0.045 ± 0.011

0.181 ± 0.018
0.180 ± 0.017
0.135 ± 0.037

W. Atlantic 0.013 ± 0.005 0.015 ± 0.006
W. Africa 0.016 ± 0.006

Trichiurus sp. 2
 (21/47/6)

0.055 ± 0.013
0.055 ± 0.012

0.067 ± 0.014
0.068 ± 0.014

W. Indian 0.017 ± 0.006 0.007 ± 0.004 0.012 ± 0.005
E. Indian 0.010 ± 0.004 0.017 ± 0.006
Indies Triangle 0.007 ± 0.004
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indicated that there was a much closer relationship 
between them when compared to that between 
T. japonicus and the Indo-Pacific morphotypes.  
The closer relationship was probably due to 
geographical proximity and a relatively short time 
since the 2 types (West Africa and West Atlantic) 
diverged from a common ancestor.

When the genetic data from al l  of the 
studies were reexamined, we found that the 
small sequence divergence between West Africa 
and the West Atlantic indicated that these 2 sub-
clades should not be elevated to species, but 
rather geographic populations, and the populations 
from the Indo-Pacific T. lepturus (Chakraborty et 

Fig. 5.  (A) Trichiurus sp. 2 16S rRNA nested clade design and its geographical distribution.   (B) Time of vicariance events are given.
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al., 2006b) were clustered into T. sp. 2 (Fig. 4).  
The low sequence divergence within this clade 
indicated a much-closer relationship between 
them when compared to that of T. japonicus or T. 
lepturus from the Atlantic and Taiwan.  Therefore, 
T. lepturus from the Indo-Pacific in previous 
studies and T. sp. 2, herein, are the same species.  
Nonetheless, Tucker (1956) recognized the Atlantic 
population of the genus Trichiurus as T. lepturus 
Linneaus, 1758; while the Indo-Pacific population 
was recognized as T. haumela Forsskål, 1775.  
Another species, T. malabaricus Day, 1865, was 
also described from the Indo-Pacific but was 
subsequently considered a synonym of T. haumela 

(Day, 1876).  In addition, T. nanhaiensis Wang 
and Xu, 1992, was described from the South 
China Sea, but this species is less well known.  
In this study, we suggest that the Indo-Pacific 
population significantly differed from T. lepturus 
and T. japonicus, and is synonymous with T. sp. 
2.  However, the nomenclature of the Indo-Pacific 
population has remained uncertain.  Herein, we 
recognize the Indo-Pacific population as T. sp. 2, 
following Chakraborty et al. (2006b) and suggest 
that only 3 species, T. japonicus, T. lepturus, and 
T. sp. 2, are valid within the “Trichiurus lepturus 
complex.”

Table 3.  Pairwise estimates of Nef (because the mutation rate is the same for each population, differences 
in θ correspond to differences in Nef  for each pair of populations), migration rates (M = Nef m), time since 
divergence (T), and time to the most recent common ancestor (TMRCA) based on analysis of mtDNA 
sequence data using MDIV

Trichiurus sp. 2 T. lepturus 

W. Indian Indies Triangle Pacific W. Atlantic Pacific

T. japonicus Nef = 1.71x106

M = 0.010
T = 10.68Ma
TMRCA = 12.27Ma

Nef = 1.15x106

M = 0.006
T = 8.83Ma
TMRCA = 9.88Ma

Trichiurus sp. 2 Nef = 2.26x106

M = 0.002
T = 11.57Ma
TMRCA = 15.23Ma

E. Indian Nef = 8.26x105

M = 0.006
T = 2.23Ma
TMRCA = 3.6Ma

Nef = 4.05x105

M = 0.010
T = 1.28Ma
TMRCA = 1.90Ma

Nef = 9.21x105

M = 0.018
T = 3.00Ma
TMRCA = 3.83Ma

Indies Triangle Nef = 2.63x105

M = 0.008
T = 4.32Ma
TMRCA =5.05Ma

Nef = 5.26x105

M = 0.012
T = 1.42Ma
TMRCA = 2.16Ma

Pacific Nef = 6.37x105

M = 0.006
T = 1.48Ma
TMRCA = 2.50Ma

T. lepturus

W. Africa Nef = 4.95x105

M = 0.010
T = 2.26Ma
TMRCA = 2.74Ma

Nef = 5.11x105

M = 0.004
T = 2.52Ma
TMRCA = 2.97Ma

Pacific Nef = 3.32x105

M = 0.002
T = 3.23Ma
TMRCA  = 2.77Ma
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Speciation and genetic population structures

The distribution patterns of the “T. lepturus 
complex” suggest their dispersal, biogeography, 
and speciation.  Based on distribution patterns, we 
found 3 biogeographic barriers which might have 
promoted speciation.  First, the barrier between T. 
lepturus and T. sp. 2 or between T. lepturus and T. 
japonicus is inferred to lie along the archipelagos 
of the West Pacific which are located at the west 
rim of the Pacific Ocean and are composed of 
the Kuril I., Japan, the Ryukyu I., Taiwan, the 
Philippines, and New Guinea (Fig. 5A).  The 
archipelagos of the West Pacific have frequently 
been identified as a boundary of the distributions 
of marine organisms (Blum 1989, Williams and 
Reid 2004).  We consider that the archipelagos of 
the West Pacific blocked the east-west dispersal 
of populations on either side (Figs. 1B, 5A).  
Second, the barrier between T. japonicus and T. 
sp. 2 was inferred to lie along the southeastern 
coast of Taiwan.  In a previous study (Blum 1989), 
the differentiation and distribution of Chaetodon 
xanthurus (Chaetodontidae) and its adjacent 
relatives were explained by actions of this barrier.  
Third, cold water upwelling close to the tip of South 
Africa blocks gene flow between the Indian and 
Atlantic Oceans.  The upwelling first appeared in 
the Miocene (Dister-Haass and Schrader 1979, 
Siesser 1980), intensified in the late Pliocene, 
and assumed its present weaker and fluctuating 
levels at the Plio-Pleistocene border (Shannon 
1985, Marlow et al. 2000).  It has been an effective 
barrier since at least the Pliocene for sea urchins 
of Eudicaris (Lessios et al. 1999), Echinometra 
(McCartney et al. 2000), and Tripneustes (Lessios 
et al. 2003), as well as for bonefishes (Colborn 
et al. 2001).  We, therefore, suggest that the 
combined actions of these 3 barriers assisted the 
“T. lepturus complex” in speciation.  This result 
also suggests that the 3 species were separated 
during the late Miocene (ca. 8.83-11.57 Ma BP).

The genetic analyses of T. lepturus revealed 
that the West Atlantic, West Africa, and the Pacific 
populations were reciprocally monophyletic, and 
the genetic divergences suggested restricted 
gene flow among them.  This genetic isolation was 
likely triggered by the isolation of biogeographic 
realms.  According to the mtDNA phylogeny 
presented herein, the barriers important to the 
phylogenetic separation in T. lepturus were (1) 
the Isthmus of Panama and (2) the 2500 km long 
stretch of deep water separating the eastern from 
the western Atlantic.  The Isthmus of Panama 

was completed in the Pliocene, 3.1 Ma BP, and 
split the ranges of a large number of previously 
continuous marine populations (Lessios 1998).  
The Atlantic and Pacific clades of T. lepturus were 
presumed to have split by the original Pliocene 
completion of the isthmus (Fig. 5B, Table 3).  The 
split in the Atlantic between sampled populations 
on the American and African coasts occurred in 
the late Pliocene.  Presumably these separations 
of Atlantic populations are related to the 2500 
km long stretch of deep water.  The separation 
of populations of T. lepturus sampled from Brazil 
and the Gulf of Mexico is even more recent, dating 
to approximately 0.52 Ma BP.  The barrier most 
likely consists of inhospitable habitat created by 
freshwater plumes of the Amazon River discharge 
(Muller-Karger et al. 1988).  This stretch of muddy 
habitat and low-salinity water was proven to be a 
surprisingly strong barrier to gene flow.

Based on the NCA analysis results, the East 
Indies Triangle of the Indo-Pacific was either a 
refuge or a colonization source for T. sp. 2.  The 
East Indies Triangle, a relatively small part of 
the Indo-Pacific Ocean, is unique in terms of its 
species diversity and evolutionary importance.  
Within this area, the species diversity of major 
groups of marine organisms such as fishes, 
corals, echinoderms, and mollusks is extremely 
high; and this is considered to be related to their 
mode of speciation.  Speciation events may be 
concentrated at the periphery of the region (as 
suggested by center-of-accumulation models of 
the diversity focus; Jokiel and Martinelli 1992), 
in the species-rich center (the center-of-origin 
model; Briggs 1999), or scattered across the 
region (Bellwood and Wainwright 2002).  In this 
study, the NCA analysis suggested that T. sp. 2 
used the East Indies Triangle of the Indo-West 
Pacific as an origin and gradually moved outward 
(Fig. 5A).  The present study supports an earlier 
suggestion (Briggs 1966 2003 2005, Mora et al. 
2003, Williams and Reid 2004) that the East Indies 
Triangle represents a center of evolutionary origin.

Phylogeographical reconstructions of T. sp. 
2 populations based on mtDNA allowed us to 
identify 4 clades.  The large divergence among 
clades indicated that they have been isolated from 
each another for a considerable amount of time 
(Tables 2, 3).  Within the Indo-Pacific, falls in sea 
levels associated with glacial maxima resulted in 
massive losses of shallow inner reefs and lagoons.  
This may have exposed large areas of continental 
shelves and reduced habitats to narrow fringes; 
on the other hand, it may have increased habitats 
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in some areas by exposing submerged islands.  
All these habitat losses and increased/ reduced 
circulations contributed to the isolation between 
adjacent regions.  There is evidence that climatic 
oscillations during the Pliocene and Pleistocene 
were important causes of marine speciation 
(Palumbi 1997, Benzie 1999).  Molecular phyloge-
netic studies of closely related clades also showed 
that sister clades diverged in the last (1-5) × 106 yr  
(McCartney et al. 2000, Williams 2000, Lessios 
et al. 2001, Harrison 2004).  Based on the  
16S rRNA estimation, the separation of these 
clades of T. sp. 2 occurred in the Pliocene (4.32 
Ma BP) and early Pleistocene (1.42-1.28 Ma BP) 
(Fig. 5B).  These results suggest that the lowering 
of sea levels during glaciations may have occurred 
many times producing different barriers which 
caused population divergence.

Trichiurus japonicus is distributed in the 
northwestern Pacific (Fig. 1B).  It is very similar 
to T. lepturus in having a whitish dorsal fin when 
fresh, whereas T. sp. 2 distinctly differs from both 
in having a yellowish-green dorsal fin along with 
other morphometric and meristic characters.  
Additionally, our data supported previous analyses 
of T. japonicus being genetically and geogra-
phically distinct from, but sister to, T. lepturus.  The 
northwestern Pacific has a unique tectonic and 
geographical history with several marginal seas 
separating Asia from the Pacific Ocean.  In the 
high latitudes around Japan in the northwestern 
Pacific, a warming event occurred in the middle 
Miocene and was subsequently followed by global 
cooling (Ennyu 2003).  The warming process 
might have driven a northward dispersal of the 
“T. lepturus complex” from the tropical south to 
temperate waters around Japan.  Then the global 
cooling process drove the “T. lepturus complex” to 
its approximate current distribution and probably 
also drove relict populations to local deeper 
waters on the continental slope.  During periods 
of low sea levels, the northerly population might 
have been isolated, and speciation subsequently 
occurred (Liu et al. 2007).  Based on the molecular 
data, T. japonicus originated around 8.83 Ma BP.  
This scenario matches the subsequent speciation 
of T. japonicus as known by its current distribution 
from subtropical to temperate waters.

CONCLUSIONS

From the present mtDNA sequences and 
previous morphological and molecular analyses 

(e.g., Lee et al. 1977, Nakabo 2000, Chakraborty 
and Iwatsuki 2006, Chakraborty et al. 2006a b, 
Tzeng et al. 2007), 3 taxonomic species of the 
“T. lepturus complex” should be considered: 
T. japonicus (northwestern Pacific), T. lepturus 
(Atlantic and Pacific), and T. sp. 2 (Indian and 
West Pacific) (Fig. 1B).  Trichiurus lepturus from 
the Indo-Pacific in previous studies (Chakraborty 
and Iwatsuki 2006, Chakraborty et al. 2006 b) 
and T. sp. 2 are the same species.  Although 
Chakraborty et al. (2007) developed methods to 
identify species of Trichiurus, T. sp. 2 still lacks 
identifying characters.  Consequently, additional 
nomenclature work is needed in order to develop 
the morphological adjustment for T. sp. 2.  In 
addition, there should be future work on revising 
the few known species, e.g., T. nanhaiensis and 
T. haumela, to resolve the taxonomy of the Indo-
Pacific type of Trichiurus.
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