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Cheng-Hao Tang and Tsung-Han Lee (2011) Morphological and ion-transporting plasticity of branchial 
mitochondrion-rich cells in the euryhaline spotted green pufferfish Tetraodon nigroviridis.  Zoological Studies 
50(1): 31-42.  Morphological characteristics and chloride regulatory functions of gill mitochondrion-rich (MR) 
cells of the pufferfish (Tetraodon nigroviridis) were investigated in this study, because T. nigroviridis are widely 
used in studies of fish osmoregulation.  In scanning electron micrographs, the apical membrane structures of 
MR cells could be distinguished into 3 phenotypes of flat, intermediate-indentation, and concave-hole.  The 
apical surfaces of most MR cells were flat with microvilli in fresh water (FW)-acclimated pufferfish, whereas 
most apical surfaces of MR cells were concave to form holes in brackish water (BW) and seawater (SW)-
acclimated pufferfish.  Observed changes in the proportion of the intermediate indentation type suggested 
that when transferred from FW to BW or SW, pufferfish MR cells were transformed from the flat type into the 
concave-hole type via different stages of the intermediate indentation type.  Meanwhile, no significant difference 
in cell size and density of gill MR cells were found in pufferfish acclimated to various salinities.  To compare 
the ion-transporting functions of MR cells, both the chloride test and double immunofluorescent staining 
of Na+/K+-ATPase (NKA) and the chloride-secreting channel, cystic fibrosis transmembrane conductance 
regulator (CFTR), were examined.  The CFTR was present in the apical membrane of NKA-immunoreactive 
cells in gills of SW-acclimated pufferfish, but completely disappeared in FW-acclimated fish.  Moreover, 
the chloride test directly demonstrated the chloride secretion function of concave-hole MR cells.  Taken 
together, our findings suggested that different types of MR cells in pufferfish gills expressed various ion-
transport proteins to conduct distinct functions necessary for salinity acclimation of this euryhaline species. 
http://zoolstud.sinica.edu.tw/Journals/50.1/31.pdf
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Teleosts have evolved to extend their 
habitats into various environments.  Euryhaline 
teleosts maintain ionic concentrat ions and 
osmolality of body fluids at constant levels 
that differ from those of external environments 
(Kaneko et al. 2008).  In response to changes 
in environmental conditions, the ion-transporting 
epithelia play a role of modulating ion fluxes.  
Although ionoregulation in euryhaline teleosts 

is mediated by a group of organs including the 
intestines and kidneys, the gills are the major site 
for balancing ion movements between gains and 
losses (Evans et al. 2005).  Because gill epithelial 
mitochondrion-rich (MR) cells are the main sites 
of ion absorption and secretion in freshwater (FW) 
and seawater (SW) fish, respectively, they are 
important in the adaptation of euryhaline teleosts 
to environments with various salinities.  In SW 
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MR cells, the apical chloride channel, cystic 
fibrosis transmembrane conductance regulator 
(CFTR), plays a crucial role in carrying out chloride 
secretion (Hirose et al. 2003, Evans et al. 2005).

Some studies (Laurent and Perry 1990, Perry 
et al. 1992) reported that injection of exogenous 
cortisol or treatment using ion-deficient water 
(Avella et al. 1987, Perry and Laurent 1989, 
Greco et al. 1996, Tang et al. 2008) altered the 
morphology of the apical surfaces of branchial MR 
cells.  Other studies demonstrated the correlations 
between MR cells and Cl− uptake in different 
species (Goss et al. 1992, Morgan et al. 1994, 
Morgan and Potts 1995, Chang et al. 2002 2003).  
Apical structures of MR cells are closely related 
to ion-transporting activities (Kaneko et al. 2008).  
Scanning electron microscopy (SEM) was used to 
observe the structures of apical membranes and 
identify functional MR cells including FW and SW 
types in many species (reviewed in Hwang and Lee 
2007, Kaneko et al. 2008).  On SEM observations, 
FW MR cells generally displayed flat or slightly 
invaginated surfaces like membrane patches 
with short cellular projections on them, while the 
SW type exhibited deeply invaginated surfaces 
with smaller orifices (Hwang and Lee 2007).  In 
addition, Na+/K+-ATPase (NKA) is thought to be a 
marker of MR cells, because it is a primary active 
transport pump providing the major driving force 
for ion-transporting functions in branchial MR 
cells (McCormick 1995, Marshall 2002, Hirose 
et al. 2003).  Many studied euryhaline species 
alter the cell size, density, or NKA responses of 
their MR cells suggesting adjustments of their 
ion-transporting functions when acclimated to 
environments with different salinities (Langdon and 
Thorpe 1985, Richman et al. 1987, McCormick 
1995, Uchida et al. 1996 1997 2000, Heljden et al. 
1997, Sasai et al. 1998, Katoh et al. 2001, Lee et 
al. 2003 2006, Kaneko et al. 2008).

The spotted green pufferfish (Tetraodon 
nigroviridis) is an advanced tetraodontid teleost 
whose native range covers the rivers and estuaries 
of Southeast Asia (Rainboth 1996).  Our previous 
studies demonstrated that T. nigroviridis can 
survive when transferred from FW to SW and vice 
versa, indicating that this species is an efficient 
osmoregulator (Lin et al. 2004, Lin and Lee 2005, 
Tang and Lee 2007a b, Wang et al. 2008).  The 
pufferfish was therefore used as a model organism 
to examine osmoregulatory mechanisms in several 
studies (Lin et al. 2004, Lin and Lee 2005, Tang 
and Lee 2007a b, Bagherie-Lachidan et al. 2008 
2009, Wang et al. 2008).  However, morphological 

characterizations (i.e., apical membrane structure, 
cell size and density) of branchial MR cells of 
this euryhaline pufferfish are not well described.  
The present set of experiments was designed to 
clarify morphological features of MR cells and their 
implied functions in this euryhaline teleost.

MATERIALS AND METHODS

Experimental animals and environments

The spotted green pufferfish T. nigroviridis 
were obtained from a local aquarium with total 
length of 5.2 ± 0.6 cm.  After being reared in 
brackish water (BW; 15‰) for 1 mo, the pufferfish 
were separated and reared in fresh water (FW), 
BW, or seawater (SW; 35‰) at 27 ± 1°C with a 
daily 12-h photoperiod for 2 wk before sampling.  
SW and BW used in this study were prepared 
from local tap water by adding proper amounts 
of synthetic sea salt (Instant Ocean, Aquarium 
Systems, Mentor, OH, USA).  The water was 
continuously circulated through fabric-floss filters.  
The fish were fed with commercial dried shrimp 
daily.

Ultrastructure of apical membrane of 
mitochondrion-rich (MR) cells in gill filaments

After anesthetization with MS-222, fish 
were killed by spinal pithing, and their gills were 
excised.  The 1st gill arch from each side was 
fixed at 4°C in the fixative consisting of 5% (w/v) 
glutaraldehyde and 4% (w/v) paraformaldehyde in 
0.1 M phosphate buffer (PB, pH 7.3) for 12 h.  After 
rinsing in 0.1 M PB, specimens were postfixed 
with 1% (v/v) osmium tetroxide in 0.1 M PB for 
1 h.  Subsequently, the specimens were serially 
dehydrated in ethanol, followed by critical-point 
drying using liquid CO2 in a critical-point dryer 
(Hitachi HCP-2, Tokyo, Japan).  The gills were 
mounted on an aluminum specimen plate and 
coated with gold by ion sputter (JFC-1600, JEOL, 
Tokyo, Japan).  Then the samples were examined 
by scanning electron microscope (SEM) (JSM-
6700F, JEOL, Tokyo, Japan).

Antibodies

The following primary antibodies were used 
in this study.  (1) Anti-Na+/K+-ATPase (NKA) 
antibody, α5, is a mouse monoclonal antibody 
(mAb) (Developmental  Studies Hybridoma 
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Bank, Iowa City, IA, USA) raised against the 
α-subunit of avian NKA.  The dilution was 1:200 
for immunofluorescent staining.  (2) Anti-cystic 
fibrosis transmembrane conductance regulator 
(CFTR) is a mouse mAb to human CFTR (R&D 
Systems, Minneapolis MN, USA).  This antibody 
was raised against a carboxy-terminal sequence of 
human CFTR and had been successfully applied 
to several fish species (Katoh and Kaneko 2003, 
McCormick et al. 2003, Hiroi et al. 2008).  The 
dilution was 1:100 for immunofluorescent staining.  
(3) NKA #11 is a rabbit polyclonal antiserum kindly 
provided by Prof. P.P. Hwang (Institute of Cellular 
and Organismic Biology, Academia Sinica, Taipei, 
Taiwan).  This antiserum was raised against 565 
amino acids (aa) corresponding to the 392-939-aa 
sequence of the α-subunit of tilapia.  This region 
shares high sequence identity with the NKA 
α-subunit of vertebrates (Hwang et al. 1998).  The 
dilution was 1:100 for immunofluorescent staining.  
For immunofluorescent staining, the secondary 
antibodies were Alexa-Fluor 546-conjugated goat 
anti-mouse IgG or Alexa-Fluor 488-conjugated 
goat anti-rabbit IgG (Invitrogen, Carlsbad, CA, 
USA).  The dilution of the 2 secondary antibodies 
was 1:200 for immunofluorescent staining.

Whole-mount double immunofluorescent 
staining

T h e  p r o c e d u r e  o f  w h o l e - m o u n t 
immunofluorescent staining was carried out as 
described by Tang and Lee (2007b).  The gill 
filaments were removed from gill samples and fixed 
in 4% paraformaldehyde in 0.1 M phosphate buffer 
(pH 7.4).  After washing in phosphate-buffered 
saline (PBS), the gill filaments were postfixed and 
permeated with 70% ethanol for 10 min at -20°C.  
The gill filaments were rinsed with phosphate 
buffered saline (PBS) and then incubated in 5% 
bovine serum albumin (BSA; Sigma, St. Louis, 
MO, USA).  To detect MR cells in whole-mount 
preparations, the gill filaments were incubated at 
room temperature for 2 h with the primary mAb of 
NKA (α5).  Following incubation, the gill filaments 
were washed several times with PBS and then 
labeled with the Alexa Fluor 546-conjugated goat 
anti-mouse secondary antibody (Invitrogen) at 
room temperature for 2 h.  To detect the chloride 
channel, CFTR, the gill filaments were first stained 
with the NKA#11 pAb and labeled with the Alexa 
Fluor 488-conjugated goat-anti-rabbit secondary 
antibody at room temperature for 2 h.  After the 1st 
staining, the gill filaments were washed several 

times with PBS before proceeding to the 2nd 
staining.  The gill filaments were subsequently 
incubated with the anti-CFTR mAb overnight at 
4°C followed by labeling with the Alexa Fluor 
546-conjugated goat anti-mouse secondary 
antibody (Invitrogen) at room temperature for 
2 h.  The samples were then washed with PBS, 
mounted with a coverslip, and observed with a 
Leica TCS-NT confocal laser scanning microscope 
(Leica Lasertechnik, Heidelberg, Germany).

Quantitative analysis of MR cells

MR cells stained by whole-mount immuno-
fluorescent staining were measured on stored 
images using Leica TCS NT software.  The cell 
size was determined as the greatest l inear 
diameters of MR cells, and was obtained from 
10 cells per individual (n = 5), which were randomly 
selected from gill filaments.  To determine the 
density of MR cells, an area corresponding to 
100 × 100 μm was randomly selected from the 
region of the afferent-vascular edge of gill filaments 
of each experimental fish (n = 5).  MR cells in the 
selected areas were counted, and the number of 
cells per square millimeter was reported.

Chloride test

To determine the chloride-secreting sites in 
gill epithelium, SW pufferfish were subjected to the 
chloride test modified from Kaneko and Shiraishi 
(2001).  The fish were first immersed in deionized 
water (DW) 3 times (for 1 min each) to remove Cl− 
on the gill surface, and immersed in 0.25% AgNO3 
in DW for 1 min.  Newly secreted Cl− reacted with 
Ag+ to form photosensitive AgCl during the period 
of incubation in AgNO3 solution.  After a brief rinse 
with DW, the gills were removed and placed in 
a glass vial containing 4% paraformaldehyde in 
0.1 M phosphate buffer (pH 7.4) and exposed to 
strong light for 30 min because light exposure 
causes the reduct ion o f  AgCl  to  form Ag 
precipitates.  To observe the details of chloride-
secreting activity of MR cells in gills of SW 
pufferfish, samples were examined using X-ray 
microanalysis.  The gills subjected to the chloride 
test were fixed as described above, dehydrated 
in ethanol, and dried using a Hitachi HCP-2 
critical-point drier (Tokyo, Japan).  The gills were 
mounted on an aluminum specimen stub, coated 
with gold by ion sputter (JFC-1600, JEOL, Tokyo, 
Japan), and examined with SEM (JSM-6700F, 
JEOL) equipped with an energy-dispersive X-ray 
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microanalyzer and detector (Oxford Inca Energy 
350, Oxford Instruments, Oxfordshire, UK).  The 
elemental profile of Ag was examined by detecting 
X-ray characteristic of Ag at 2.644 keV (LI) and 
2.984 keV (Lα1).  For mapping the Ag profile, the 
X-ray signals were accumulated for 375 s.

Statistical analysis

Values were compared using a one-way 
analysis of variance (ANOVA), and post-hoc 
analyses were conducted using Tukey’s pairwise 
method.  Values are expressed as the means 
± SEM.  The significant difference was set as 
p < 0.05.

RESULTS

The apical structure of gill mitochondrion-rich 
(MR) cells

The apical surface structure of MR cells 
distributed in the flat region of the afferent-
vascular edge of gill filaments was observed 
by scanning electron microscope (SEM) (Fig. 
1).  Three phenotypes of MR cells were found 
on the afferent side of gill filaments according 
to the apical surface structures, which were 
distinguished into the flat (Fig. 2A), different stages 
of intermediate-indentation (Figs. 2 B-D), and 
concave-hole subtypes (Fig. 2E).  Furthermore, 
the apical opening of most MR cells exhibited 

the flat structure in fresh water (FW)-acclimated 
pufferfish, and the apical surface was about 2-3 μm 
in diameter (Fig. 3A).  In brackish water (BW)- and 
seawater (SW)-acclimated fish, however, most 
MR cells formed the hole structure (Figs. 3B, C).  
The apical holes of MR cells were about 1-2 μm in 
diameter.  In addition, the intermediate indentation 
type was found in all salinity groups with different 
proportions.

Morphological characteristics of branchial MR 
cells

The cell size and density of MR cells were 
examined by immunostaining with Na+/K+-ATPase 
(NKA), the marker of MR cells, in whole-mount 
preparations of gill filaments from pufferfish 
acclimated to FW, BW, and SW (Figs. 4A-C).  The 
cell size and density of branchial MR cells were 
similar in pufferfish of all salinity groups (Figs. 4D, 
E).  In FW-, BW-, and SW-acclimated pufferfish, 2 
MR cells were sometimes found to connect each 
other to form complexes (arrowheads in Figs. 4 
A-C).

Immunolocalization of cystic fibrosis trans-
membrane conductance regulator (CFTR) in gill 
MR cells

Localization of branchial CFTR was deter-
mined by whole-mount immunofluorescent staining 
and double-staining with NKA.  The signal of CFTR 
immunoreaction completely disappeared in FW-
acclimated individuals (Figs. 5A-C).  In contrast, 
CFTR immunoreactions were detected in the 
apical membrane of NKA-immunoreactive cells 
in gill filaments of SW-acclimated pufferfish (Figs. 
5D-F).

Chloride-secreting activity

The chloride-secreting activity of branchial 
MR cells was examined because the channel for 
chloride secretion, CFTR, was expressed in the 
apical membrane of MR cells in SW-acclimated 
pufferfish (Fig. 5).  The gill filaments of SW-
acclimated pufferfish were subjected to the 
chloride test.  These micrographs showed that 
the Ag distribution was confined to the apical hole 
of branchial MR cells and its adjacent area (Fig. 
6).  Because Ag was the reaction product in the 
chloride test, branchial MR cells in SW pufferfish 
definitely secreted Cl− through their apical holes 
with CFTR localization (Fig. 5).

Fig. 1.  Scanning electron micrograph of a gill filament of the 
euryhaline spotted green pufferfish (Tetraodon nigroviridis).  
The filament showed the afferent-vascular (AV) edge, efferent-
vascular (EV) edge, and lamellae (L).

AV

L

EV

200 μm
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Fig. 2.  Observed transformation of mitochondrion-rich (MR) cell phenotypes.  From scanning electron micrographs, apical structure 
phenotypes of MR cells were presumed to transform from the flat type (A) to the hole type (E), via the intermediate-indentation types (i.e., 
I, II, and III) (B-D).  Scale bar = 2 μm.  F, flat; I, intermediate indentation; H, hole.
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DISCUSSION

The gill filaments and lamellae are covered 
by epithelium which not only provides a distinct 
boundary between the external environment and 
body fluids of fish but also plays a critical role in 
the physiological function of the fish gills (Evans 
et al. 2005).  The mitochondrion-rich (MR) cell 
is one of the major cell types in gill epithelium 
and considered to be one of the predominant 
sites of active physiological mechanisms (Wilson 
and Laurent 2002, Hirose et al. 2003, Evans et 
al. 2005, Marshall and Grosell 2006).  Scanning 
electron microscopy (SEM) was used in the 
present study to observe MR cells, which were 
mainly distributed in the afferent-vascular edge 
of gill filaments in the spotted green pufferfish 
(Tetraodon nigroviridis), similar to previous findings 
in many other teleostean species (Wilson and 
Laurent 2002, Evans et al. 2005, Marshall and 
Grosell 2006).  In addition, branchial MR cells were 
generally not found in gill lamellae of T. nigroviridis 
acclimated to fresh water (FW), brackish water 
(BW; 15‰), and seawater (SW; 35‰) by either 
immunohistochemical (Lin et al. 2004) or SEM 
observations (data not shown).  In other species, 
such as milkfish (Chanos chanos) (Lin et al. 2003) 
and tilapia (Oreochromis mossambicus) (Tang et 
al. 2008), MR cells were scarcely found on the 
epithelium of gill lamellae except under particular 
environmental conditions that are associated 
with the presence of lamellar MR cells (Evans et 
al. 2005, Hwang and Lee 2007).  Thus, it will be 
intriguing to detect whether MR cells are present 
in gill lamellae when pufferfish are acclimated to 
hypersaline water (45‰) in future studies and 
to compare the results to the other species (i.e., 
Japanese eel, Anguilla japonica, Sasai et al. 1998; 
sea bass, Latealabrax japonicus, Hirai et al. 1999; 
Atlantic salmon, Salmo salar, Hiroi et al. 2007; and 
tilapia, O. mossambicus, Tang et al. 2008) to clarify 
the roles of MR cells in pufferfish gill lamellae.

MR cells located in gill epithelium play 
a role in ionoregulation because they are in 
contact with the external environment (via the 
apical membrane) and blood (via the basolateral 
membrane) (Evans et al. 2005, Kaneko et al. 
2008).  Therefore, the apical membrane structure 
of MR cells in many species varies greatly with 
diverse environmental salinities, generally with 
an apical concave crypt in SW and a convex 
surface equipped with numerous microvilli in FW 
(Marshall and Grosell 2006, Hwang and Lee 2007, 
Kaneko et al. 2008).  From SEM micrographs, 3 
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Fig. 3.  Scanning electron micrographs of the afferent-vascular 
area from gill filaments of pufferfish acclimated to fresh water 
(FW; A), brackish water (BW; B), and seawater (SW; C) for 
2 wk. The letters in the micrographs indicate subtypes of 
mitochondrion-rich (MR) cells with different apical structures.  
Most MR cells of FW pufferfish were the flat type (F), almost all 
of the MR cells of SW fish were the hole type (H), and both the 
hole and intermediate-indentation types (I) were found in BW 
individuals.  Scale bar = 10 μm.
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Fig. 4.  Confocal laser scanning micrographs of whole-mount preparations of gill filaments in pufferfish acclimated to fresh water (FW; 
A), brackish water (BW; B), and seawater (SW; C).  Gill filaments were stained with anti-Na+/K+-ATPase (NKA) antibody (α5).  Arrows 
indicate the multicellular complex of mitochondrion-rich (MR) cells consisting of 2 adjacent cells.  No significant differences (n = 5; mean 
± SEM) were found in cell size (D) and or density (E) among all groups.
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Fig. 5.  Confocal laser scanning micrographs of whole-mount preparations of gill filaments in freshwater- (FW; A-C) and seawater (SW; 
D-F)-acclimated pufferfish.  Gill filaments were double-stained with anti-Na+/K+-ATPase (NKA; green; A, D) (NKA #11) and anti-cystic 
fibrosis transmembrane conductance regulator (CFTR) (CFTR; red; B, E).  The merged images (C, F) of double-stained gill filaments 
showed that the CFTR was localized in apical membrane of NKA immunoreactive cells in SW pufferfish (F), while the signal of CFTR 
expression completely disappeared in FW pufferfish (C).
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phenotypes (i.e., flat, intermediate-indentation, and 
hole types) of branchial MR cells were identified 
in pufferfish depending on the structures of their 
apical surfaces.  The flat type MR cells were 
predominately found in FW pufferfish, while most 
MR cells in BW and SW pufferfish were the hole 
type (Fig. 3).  In the time-course experiments of 
Mozambique tilapia which were transferred from 
hard FW (HFW) to 5‰ SW, wavy-convex MR 
cells decreased in apical surface area at 3 h post-
transfer and formed deep-holes after 12 h post-
transfer (Lee et al. 1996).  It might indicate that the 
transformation process of tilapia MR cells occurred 
efficiently.  In addition, Katoh and Kaneko (2003) 
provided direct evidence to demonstrate that the 
occurrence of intermediate types of MR cells in 
killifish was most frequently observed at 3 h post-
transfer from SW to FW, and the morphology of 
intermediate-type MR cells was illustrated to show 
larger apical surfaces and shallower concave 
pits compared to those observed in typical SW-
type MR cells.  Combining the results of tilapia 
(Lee et al. 1996) and killifish (Katoh and Kaneko 
2003) with the present study, we proposed that 
the transformation process of MR cells was 
from the flat structure (Fig. 2A) to formation of 
the concave-hole structure (Fig. 2E) via the 
intermediate-indentation structure (Figs. 2B-D) 

when pufferfish were transferred from FW to BW 
or SW.  The present study not only distinguished 
different types of MR cells but also presumed the 
observed transformation process in the euryhaline 
pufferfish to provide more information about the 
apical opening morphology of branchial MR cells in 
euryhaline species.

Na+/K+-ATPase (NKA) expressed in the 
basolateral membrane of MR cells is the primary 
active enzyme that provides the driving force for 
the ion-transporting system of MR cells (McCormick 
1995).  The antibody (α5) specific for this enzyme 
has been used for immunodetection in many 
studies of fish ionoregulation (Marshall et al. 2002, 
Lee et al. 2003, Tipsmark et al. 2004, Lin et al. 
2006, Ivanis et al. 2008, Tang et al. 2008, Wang 
et al. 2008).  In addition to SEM observation, this 
study also used whole-mount immunofluorescent 
staining of NKA to investigate the size and density 
of MR cells in gills of pufferfish.  Whole-mount 
immunocytochemistry was used to study MR cells 
in several teleosts (Katoh et al. 2001, Katoh and 
Kaneko 2003, Lee et al. 2003, Lin et al. 2006, 
Tang and Lee 2007b, Hiroi et al. 2008, Inokuchi 
et al. 2008 2009).  The effect of environmental 
salinity on the cell size and density of branchial 
MR cells seems to vary among different euryhaline 
teleost species.  The cell size of gill MR cells of 

Fig. 6.  (A) Scanning electron micrograph showed the hole type of mitochondrion-rich (MR) cell (MRC; arrow) in gill epithelium of 
seawater-acclimated pufferfish.  (B) In the area of the MRC apical crypt, a distribution image of Ag precipitates was detected by the X-ray 
characteristic of Ag at 2.644 and 2.986 keV.  (C) The merged image of the MRC apical crypt (A) and its X-ray signals (B) indicated that 
the presence of Cl− was confined to the apical crypt of the MRC (arrow) and its adjacent area.  PVC, pavement cell.  Scale bars = 1 μm.
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the euryhaline Mozambique tilapia increased but 
the density decreased with elevated environmental 
salinity (Heijden et al. 1997, Uchida et al. 2000).  
Moreover, the size of gill MR cells was larger 
in FW- than in SW-acclimated killifish, but the 
cell density was similar between FW- and SW-
acclimated groups (Katoh et al. 2001).  In Atlantic 
salmon, both the cell size and density of MR cells 
were found to increase after acclimation to SW 
or during smolting (Langdon and Thorpe 1985, 
Pelis et al. 2001).  However, the cell size and 
number of MR cells on primary filament decreased 
in postsmolts (Pelis et al. 2001).  Interestingly, 
this study found no significant difference in the 
cell size and density of branchial MR cells in 
pufferfish acclimated to different salinities (Fig. 
4).  Meanwhile, the abundance of branchial NKA 
α-subunit protein was the lowest in BW-acclimated 
pufferfish compared to FW- and SW-acclimated 
individuals (Lin et al. 2004).  These findings 
suggested that modulating protein amounts of 
branchial NKA of the pufferfish acclimated to 
different environmental salinities occurred through 
modulating the protein amounts of NKA per cell 
rather than altering the size or density of MR cells, 
as reported in tilapia and killifish (Uchida et al. 
2000, Katoh et al. 2001).

Cystic fibrosis transmembrane conductance 
regulator (CFTR) is a chloride channel expressed 
in apical membranes of MR cells and which is 
responsible for chloride secretion in teleosts 
acclimated to SW (reviewed in Hirose et al. 
2003, Evans 2008, Kaneko et al. 2008).  The 
localization and expression of ion transporters 
(i.e., NKA and CFTR) were used to classify 
the function of MR cells in euryhaline teleosts 
acclimated to different environmental salinities 
(Marshall et al. 2002, Katoh and Kaneko 2003, 
Hiroi et al. 2005a b, Wilson et al. 2007a).  In the 
present study, localization of branchial CFTR was 
determined by counter-staining with NKA.  In SW-
acclimated pufferfish, CFTR was expressed in 
apical membranes of MR cells.  In contrast, CFTR 
was undetectable in FW-acclimated pufferfish (Fig. 
5).  This finding is similar to previous studies of 
tilapia (Hiroi et al. 2005a b) and killifish (Katoh and 
Kaneko 2003).  Wilson et al. (2007b) also reported 
that the immunoreaction of CFTR in apical 
membranes of branchial MR cells was positive 
in glass-eel, while it was negative in the elvers 
stage of the European eel (Anguilla anguilla).  
Furthermore, SW-acclimated pufferfish were also 
examined with the chloride test to demonstrate the 
chloride secretion of SW MR cells.  The method 

used in the chloride test was also used in other 
euryhaline teleosts to detect the site of chloride 
secretion (Wong and Chan 1999, Kaneko and 
Shiraishi 2001).  In this study, the presence of 
large amounts of silver precipitates was confined 
to apical crypt of the hole-type MR cells of SW 
pufferfish (Fig. 6) with CFTR localized in apical 
membrane (Fig. 5).  In FW pufferfish, however, 
a few silver precipitates were sprinkled on gill 
filaments rather than being specifically located on 
the apical surface (data not shown), and CFTR 
was immunonegative (Fig. 5).  Taken together, our 
results provided direct evidence indicating different 
ion-transporting functions for SW- and FW-type 
MR cells in gills of the euryhaline pufferfish.

Tetraodon nigroviridis is a peripheral FW 
species often found in estuaries and FW rivers 
(Helfman et al. 1997).  Thus, the pufferfish was 
demonstrated to be an efficient osmoregulator 
in experimental conditions, as it could tolerate 
direct transfer from FW to SW and vice versa 
(Lin et al. 2004, Lin and Lee 2005, Tang and Lee 
2007a b, Wang et al. 2008).  Although previous 
studies investigated the iono- and osmoregulatory 
mechanisms of gills of T. nigroviridis (Lin et 
al. 2004, Tang and Lee 2007a b, Wang et al. 
2008, Bagherie-Lachidan et al. 2008 2009), the 
morphological features of gill MR cells were not 
addressed in this species.  The present study 
investigated the types of MR cells and also 
proposed the transformation process and further 
discussed the cell size and number of branchial 
MR cells in pufferfish acclimated to environments 
with various salinities.  Taken together, changes in 
gill MR cell phenotypes, with positive or negative 
expression of the apically located chloride 
secretion channel indicating altered functions of 
MR cells, are crucial for efficient responses to 
salinity challenge in pufferfish.  We also concluded 
that expression of the key enzyme, NKA, and other 
ion-transport proteins, rather than modulation 
of the cell size and number of MR cells, were 
involved in regulating the ion-transporting capacity 
of branchial MR cells of pufferfish acclimated to 
different salinities.
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