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Comparative studies of crustacean species 
known to occur over a wide geographic range can 
provide valuable information on the development of 
intraspecific adaptations to different environmental 
conditions (Stearns 1992, Terossi et al. 2010).  
Moreover, some morphological variability among 
closely or distantly related decapod species 
might be used as models to test the role of the 
environment in explaining evolutionary innovations 
by species inhabiting marine habitats.  However, 
the number of published studies regarding this 
subject is limited, particularly for members of 

the anomuran infraorder, which hinders the 
development of a more complete understanding of 
the evolution of life cycle strategies in this highly 
diverse group of crustaceans (Shirley et al. 1987, 
Garcia and Mantelatto 2001, Mantelatto et al. 2006, 
Silva et al. 2009, Weiss et al. 2010).

Porcellanid crabs represent an important 
part of the decapod fauna living in intertidal and 
shallow-water zones.  Currently, there are about 
279 valid species partitioned among 30 genera, 
primarily distributed in tropical and subtropical 
zones (Osawa and McLaughlin 2010).  The genus 
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Petrolisthes Stimpson, 1858 is composed of nearly 
100 valid species distributed globally and is the 
largest genus within the family Porcellanidae (Haig 
1960, Stillman and Reeb 2001, Rodríguez et al. 
2005, Osawa and McLaughlin 2010).

Petrolisthes armatus (Gibbes 1850) has the 
widest distribution known in the Porcellanidae 
and is one of the most ubiquitous and locally 
abundant intertidal decapods along the Atlantic 
coasts of the Americas.  Its known distribution 
covers wide ranges on both the Atlantic and Pacific 
coasts (Melo 1999, Stillman and Reeb 2001): in 
the western Atlantic Ocean, it ranges from North 
Carolina to Florida, the Gulf of Mexico, the Antilles, 
Central America, Venezuela, Colombia, and Brazil 
(Rodríguez et al. 2005); in the eastern Atlantic 
from Senegal to Angola, and Ascension I.; and in 
the eastern Pacific, from the Gulf of California to 
Costa Rica, the Galapagos I., and Peru.  Its wide 
geographical distribution makes this species an 
ideal and frequently used candidate for studies on 
distribution and biogeography (Carvacho 1980, 
Gore 1982, Stillman and Somero 2000, Werding 
et al. 2003, Rodríguez et al. 2005), molecular 
phylogeny (Stillman and Reeb 2001, Morrison 
et al. 2002), population dynamics (Oliveira and 
Masunari 1995, Díaz-Ferguson and Vargas-
Zamora 2001, Miranda and Mantelatto 2009), and 
reproduction (Wehrtmann et al. 2011).

The apparent distribution of a species over a 
wide geographical range may raise the question 
of whether there is one or several, morphologically 
similar species.  As an example involving deca-
pods, many studies focusing on the genetic 
differentiation of different lobster populations led 
to the recognition of subspecies or new species 
(Sarver et al. 1998 2000, García-Rodríguez and 
Perez-Enriquez 2008).  Considering the wide 
geographical distribution and morphological 
plasticity reported for P. armatus, it is not surprising 
that several authors mentioned the possibility of 
a P. armatus species complex (Rodríguez et al. 
2005, Hiller et al. 2006).

Therefore, in the present study, we used 
genetic data from the mitochondrial 16S ribosomal 
gene to determine the genetic variability of P. 
armatus from the eastern tropical Pacific (Costa 
Rica) and the western Atlantic distributions 
(Costa Rica, Panama, Venezuela, and Brazil).  
Additionally, morphological data were compiled 
from Haig (1960), and the encountered diagnostic 
differences were compared with our molecular 
findings.  Our results provide solid evidence to 
reject the hypothesis of a P. armatus species 

complex within the specimens studied herein from 
the Americas.

MATERIAL AND METHODS

Sample collection

Porcellanid crabs were collected in 2004-
2009 from different localities or were provided 
by colleagues (Table 1).  Freshly collected 
specimens were directly preserved in 75%-90% 
ethanol.  Species identification was confirmed 
using morphological characters described in the 
literature (Haig 1960, Melo 1999).  The following 
morphological characters were checked: carapace 
ornamentation (granulations or plications), the 
presence of an epibranquial spine, front shape, the 
number and shape of the teeth on the carpus of 
the chelipeds, walking legs on the anterior margin 
and presence of a spine on the posterodistal 
angle of 1st and 2nd legs.  Specimen vouchers 
from which new tissue subsamples were obtained 
were deposited in the Crustacean Collection 
of the Biology Department (CCDB), Faculty of 
Philosophy, Sciences and Letters of Ribeirão Preto 
(FFCLRP), Univ. of São Paulo (USP) (Table 1).

DNA extraction, amplification, and sequencing

The sequences used in this study were 
generated from our own extractions (14 sequ-
ences) or retrieved from GenBank (Table 1).  When 
possible, 2-5 specimens from each collection site 
were used for the species analyses to limit the 
chance of misidentifications and also to observe 
the variability.  Apart from P. armatus, we included 
other porcellanid crabs from other genera to 
compare them with a broader extension of the 
phylogenetic tree.

DNA extraction, amplification, and sequencing 
protocols followed Schubart et al. (2000a) with 
modifications described by Mantelatto et al. 
(2006 2007 2009a) and Robles et al. (2007).  
Total genomic DNA was extracted from muscle 
tissue from the walking legs or chelipeds.  The 
muscle was ground up and incubated for 1-12 h
in 600 μl of lysis buffer at 65°C; proteins were 
separated by the addition of 200 μl of 7.5 M 
ammonium acetate prior to centrifugation.  DNA 
precipitation was achieved by the addition of 600 μl 
of cold isopropanol followed by centrifugation; the 
resultant pellet was washed with 70% ethanol, 
dried, and resuspended in 10-20 μl of TE buffer.
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An approx imate ly  550-base pai r  (bp) 
region of the 16S rDNA gene was amplified from 
diluted DNA by means of a polymerase chain 
reaction (PCR) conducted in a Thermo® PxE 
0.2 Thermal Cycler (Waltham, MA, USA) with 
the following thermal cycles: initial denaturing 
for 10 min at 94°C, annealing for 38-42 cycles 
of 1 min at 94°C, 1 min at 45-48°C, and 2 min 
at 72°C, with a final extension of 10 min at 
72°C.  The primers were designated as follows: 
16SH2 (5 ' -AGATAGAAACCAACCTGG-3 ' ) , 
16SL2 (5'-TGCCTGTTTATCAAAAACAT-3'), 
and 16Sar (5'-CGCCTGTTTATCAAAAACAT-3') 
(for references on the primers see Schubart 
et al. 2000a b).  PCR products were purified 
using a SureClean Plus kit (Bioline Inc., USA) 
and sequenced with ABI Big Dye® Terminator 
Mix in an ABI Prism 3100 Genetic Analyzer® 
following Applied Biosystems protocols (Applied 
Biosystems, Carlsbad, CA, USA).  All sequences 
were confirmed by sequencing both strands.  
A consensus sequence for the 2 strands was 
obtained using BioEdit vers. 7.0.7.1 (Hall 2005).

Phylogenetic analysis

Sequences were edited with the BioEdit 
program (Hall 2005).  The phylogenetic analysis 
was exclusively based on a partial fragment of 
the 16S rDNA gene.  We carried out a dynamic 
analysis using POY software, vers. 4 (Varón et al. 

2010), under direct optimization with parsimony 
as the optimality criterion (Wheeler 1996).  Trees 
were constructed through a random addition 
sequence followed by a combination of branch-
swapping steps (subtree pruning and regrafting 
(SPR) and tree bisection and reconnection (TBR)).  
The ratcheting procedure was used to enhance 
branch swapping by randomly reweighting 
characters during the SPR and TBR procedures.  A 
sensitivity analysis was carried out using different 
cost matrices (Wheeler 1996).  All datasets were 
analyzed under 10 parameter sets for the range of 
indel, transition, and transversion ratios (Table 2).

Divergence analysis

Sequences were aligned using ClustalX 
(Thompson et al. 1997) with an interface in 
BioEdit with default parameters (Hall 2005).  
Ambiguous regions in the al ignment were 
removed.  Sequences were analyzed using the 
Modeltest program (Posada and Crandall 1998) to 
find the evolutionary model that best fits the data.  
Phylogenetic reconstructions were conducted 
using PAUP 4.0 beta 10 (Swofford 2003) for the 
distance analysis (minimum evolution).  The 
consistency of the topologies was measured by 
the bootstrap method (with 1000 bootstraps), and 
only confidence values of > 50% are reported.  
To evaluate the range of intrageneric sequence 
identity found among recognized species, we 

Table 1.  Porcellanid crab species used for the molecular phylogenetic reconstructions with respective site 
of collection, museum catalogue number, and genetic database accession numbers (GenBank) (CCDB, 
Crustacean Collection of the Department of Biology, FFCLRP, Univ. of São Paulo, Ribeirão Preto, Brazil; 
CNCR, Colección Nacional de Crustáceos, Instituto de Biología, Univ. Nacional Autónoma de México, 
Mexico D.F., Mexico; MZUESC, Museum of Zoology, Univ. of Santa Cruz, Bahia, Brazil; ULLZ, Zoological 
Collection, Univ. of Louisiana at Lafayette, Lafayette, LA, USA)

Species Collection site Catalogue no. GenBank accession no.

Megalobrachium poeyi (Guérin, 1855) Quintana Roo (Mexico) CNCR 9818 DQ865326
Megalobrachium poeyi (Guérin, 1855) Isla Margarita (Venezuela) ULLZ 5343 DQ865327
Megalobrachium roseum (Rathbun 1900) Ubatuba, SP (Brazil) CCDB 2854 HM352468
Megalobrachium soriatum (Say, 1818) Florida (USA) ULLZ 5262 DQ865325
Neopisossoma angustifrons (Benedict, 1901) Vera Cruz (Mexico) ULLZ 5373 DQ865336
Neopisossoma angustifrons (Benedict, 1901) Isla Cubagua (Venezuela) ULLZ 5345 DQ865337
Pachycheles ackleianus A. Milne-Edwards, 1880 Looe Key Reef (Florida) ULLZ 4824 DQ865332
Pachycheles grossimanus (Guérin, 1835) Valdivia (Chile) CCDB 2105 HM352466
Pachycheles monilifer (Dana, 1852) Ubatuba, SP (Brazil) CCDB 696 HM352467
Pachycheles monilifer (Dana, 1852) Vera Cruz (Mexico) ULLZ 5388 DQ865330
Pachycheles monilifer (Dana, 1852) Isla Cubagua (Venezuela) ULLZ 5348 DQ865331
Pachycheles pilosus (H. Milne Edwards, 1837) Quintana Roo (Mexico) ULLZ 5389 DQ865328
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Table 1.  (Continued)

Species Collection site Catalogue no. GenBank accession no.

Pachycheles pilosus (H. Milne Edwards, 1837) Isla La Tortuga (Venezuela) ULLZ 5349 DQ865329
Pachycheles susanae Gore and Abele, 1973 Quintana Roo (Mexico) CNCR 7273 DQ865333
Pachycheles susanae Gore and Abele, 1973 Isla Cubagua (Venezuela) ULLZ 5352 DQ865334
Petrolisthes amoenus (Guérin, 1855) Isla Cubagua (Venezuela) Unknown DQ444873
Petrolisthes armatus (Gibbes, 1850) Caravelas, BA (Brazil) MZUESC 975 HM352470
Petrolisthes armatus (Gibbes, 1850) Nova Viçosa, BA (Brazil) MZUESC 834 HM352471
Petrolisthes armatus (Gibbes, 1850) Paraty, RJ (Brazil) CCDB 2314 HM352472
Petrolisthes armatus (Gibbes, 1850) Florianópolis, SC (Brazil) CCDB 1834 HM352473
Petrolisthes armatus (Gibbes, 1850) Itajaí, SC (Brazil) CCDB 1883 HM352474
Petrolisthes armatus (Gibbes, 1850) São Sebastião, SP (Brazil) CCDB 1747 HM352475
Petrolisthes armatus (Gibbes, 1850) Ubatuba, SP (Brazil) CCDB 2315 HM352476
Petrolisthes armatus (Gibbes, 1850) Punta Morales (Pacific Costa Rica) CCDB 1718 HM352477
Petrolisthes armatus (Gibbes, 1850) Salinas (Ecuador) Unknown DQ444874
Petrolisthes armatus (Gibbes, 1850) Bocas del Toro (Panama) CCDB 2582 HM352478
Petrolisthes armatus (Gibbes, 1850) Isla Margarita (Venezuela) CCDB 1819 HM352479
Petrolisthes armatus (Gibbes, 1850) Florida (USA) ULLZ 5252 DQ865310
Petrolisthes agassizii Faxon 1893 Gorgona I. (Colombia) Unknown DQ444872
Petrolisthes bolivarensis Werding and Kraus, 2003 San Bernardo Is. (Colombia) Unknown DQ444876
Petrolisthes caribensis Werding, 1983 Twin Cays (Belize) Unknown DQ865295
Petrolisthes caribensis Werding, 1983 Quintana Roo (Mexico) Unknown DQ865297
Petrolisthes columbiensis Werding, 1983 Islas del Rosário (Colombia) Unknown DQ444899
Petrolisthes edwardsii (Saussure, 1853) Salinas (Ecuador) Unknown DQ444904
Petrolisthes galathinus (Bosc, 1801) Carrie Bow (Belize) Unknown DQ865299
Petrolisthes galathinus (Bosc, 1801) Salinas (Ecuador) Unknown DQ444933
Petrolisthes galathinus (Bosc, 1801) Quintana Roo (Mexico) CNCR 10937 DQ865303
Petrolisthes galathinus (Bosc, 1801) Estero Aserradores (Nicaragua) ULLZ 5316 DQ865302
Petrolisthes galathinus (Bosc, 1801) Isla Cubagua (Venezuela) ULLZ 5355 DQ865301
Petrolisthes glasselli Haig, 1957 Isla Malpelo (Colombia) Unknown DQ444939
Petrolisthes haigae Chace, 1962 Naos I. (Panama) Unknown AF260624
Petrolisthes haigae Chace, 1962 Salinas (Ecuador) Unknown DQ444940
Petrolisthes hirtispinosus Lockington, 1878 Isla Angel de la Guarda (Mexico) Unknown DQ444941
Petrolisthes jugosus Streets, 1872 Quintana Roo (Mexico) ULLZ 5406 DQ865315
Petrolisthes lewisi (Glassell, 1936) Estero Nagualapa (Nicaragua) ULLZ 5321 DQ865317
Petrolisthes magdalensis Werding, 1978 Isla Margarita (Venezuela) ULLZ 5358 DQ865316
Petrolisthes marginatus Stimpson, 1859 Veracruz (México) ULLZ 5410 DQ865308
Petrolisthes marginatus Stimpson, 1859 Quintana Roo (Mexico) ULLZ 5412 DQ865306
Petrolisthes monodi Chace, 1956 Cape Verde Unknown DQ444944
Petrolisthes politus (Gray, 1831) Quintana Roo (Mexico) ULLZ 5412 DQ865306
Petrolisthes politus (Gray, 1831) Isla Cubagua (Venezuela) ULLZ 5360 DQ865307
Petrolisthes quadratus Benedict, 1901 Quintana Roo (Mexico) CNCR 3724 DQ865318
Petrolisthes quadratus Benedict, 1901 Isla La Tortuga (Venezuela) ULLZ 5361 DQ865319
Petrolisthes robsonae Glassell, 1945 Darien (Panama) Unknown DQ444946
Petrolisthes rosariensis Werding, 1978 Carrie Bow Cay (Belize) Unknown DQ865305
Petrolisthes sanfelipensis Glassell, 1936 Puerto Penasco (Mexico) Unknown AF260604
Petrolisthes sanmartini Werding and Hiller, 2002 Islas del Rosario (Colombia) Unknown DQ444954
Petrolisthes tonsorius Haig, 1960 Cabo Corrientes (Colombia) Unknown DQ444959
Petrolisthes tridentatus Stimpson, 1859 Quintana Roo (Mexico) ULLZ 5414 DQ865322
Petrolisthes tridentatus Stimpson, 1859 Isla Margarita (Venezuela) ULLZ 5363 DQ865323
Petrolisthes tridentatus Stimpson, 1859 Estero Nagualapa (Nicaragua) ULLZ 5324 DQ865321
Petrolisthes tridentatus Stimpson, 1859 Isla Naos (Panama) ULLZ 5364 DQ865320
Petrolisthes violaceus (Guérin, 1831) Coquimbo (Chile) CCDB 2109 HM352469
Petrolisthes zacae Haig, 1968 Bahia Malaga (Colombia) Unknown DQ444962
Porcellana sayana (Leach, 1820) Isla Margarita (Venezuela) ULLZ 5366 DQ865339
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compared genetic distances between species pairs 
by pairwise comparisons using p-distances as 
the substitution model in the PAUP program.  The 
distance matrix shows the proportion of divergent 
residues among all sequences in the alignment as 
they were currently aligned.

RESULTS

Taxonomic assignments

Based on the morphology, voucher materials 
were assigned to species as follows, and DNA was 
successfully sequenced for those underlined (CW, 
carapace width).

Petrolisthes armatus (Gibbes, 1850)

Porcellana armata Gibbes, 1850: 190 (type locality, Florida, 
USA), Not P. armata Dana, 1852: 426.

Petrolisthes armatus (see Haig 1960 for citations under this 
date), Gore 1970: 75, 76, 79, 86, 87, figs. 1-6; Gore 1972: 
67, 71, 79, 80, 82, figs. 1-6; Werding 1977: 176, 198, fig. 
18; Hendrickx and Harvey 1999: 379; Stillman and Reeb 
2001: 236, 238-243, fig. 2; Werding et al. 2003: 79, 81, 
82; Vargas and Cortés 2006: 463, 470; Hiller et al. 2006: 6, 
10, 12-14, 19, 20; Rodríguez et al. 2005: 544, 545, 559, 
560, 571, 572; Rodríguez et al. 2006: 115, 116, 118, 123, 
124, 126; Coelho et al. 2007: 12.

Materials examined: 2 ♂♂  (7.9, 9.6* mm 
CW), 4 ♀♀ (5.2, 5.7, 7.2, 7.8 mm CW), Playa 
Curu, Paquera, Pacific Costa Rica, Feb. 2009, 
CCDB 2581; 2 ♂♂  (11.6, 12.7* mm CW), 1 ♀ 
(9.6 mm CW), Playa Blanca, Punta Morales, Pacific 
Costa Rica, Sept. 2005, CCDB 1718; 3 ♀♀ (4.7, 
5.40, 7.0* mm CW), Playa Bluff, Panama, Feb. 
2009, CCDB 2582; 1 ♂  (8.0* mm CW), Muelle de 
la Guardia, Isla Margarita, Venezuela, Aug. 2006, 
CCDB 1819; 1 ♀ (9.8* mm CW), Playa Valdez, 
Isla Margarita, Venezuela, Aug. 2006, CCDB 
1811; 5 ♂♂  (3.5, 3.8, 4.5, 5.0, 6.0* mm CW), 
4 ♀♀ (2.4, 3.5, 4.3, 6.2 mm CW), Rio Caravelas, 
Caravelas (BA), Brazil, Aug. 2007, MZUESC 
975; 3 ♂♂  (2.5, 4.6, 10.8* mm CW), 2 ♀♀ (4.4, 
4.6 mm CW), Praia Pontal da Barra, Nova Viçosa 
(BA), Brazil, Mar. 2007, MZUESC 834; 1 ♂  (mm 
CW), Guarapari Channel (ES), Brazil, Nov. 2006, 
CCDB 2583; 2 ♂♂  (3.6, 7.2 mm CW), 3 ♀♀ 
(4.1, 6.0, 7.3* mm CW), Paraty (RJ), Brazil, Aug. 
2007, CCDB 2314; 1 ♂  (12.5 mm CW), Praia 
Grande, Ubatuba (SP), Brazil, June 2008, CCDB 
2377; 1 ♂ (10.9 mm CW), 2 ♀♀ (7.4, 10.2 mm 
CW), Saco do Codó, Ubatuba (SP), Brazil, June 
2008, CCDB 2369; 1 ♂  (13.6* mm CW), Praia 

do Pinto, Ubatuba (SP), Brazil, Nov. 2006, CCDB 
2315; 4 ♂♂  (8.6, 8.7, 10.0, 10.8 mm CW), 2 ♀♀ 
(7.0, 9.7 mm CW), Praia do Araçá, São Sebastião 
(SP), Brazil, July 2006, CCDB 1844; 2 ♂♂  (9.0*, 
11.6 mm CW), 1 ♀ (11.6 mm CW), Channel 6, 
Santos (SP), Brazil, July 2003, CCDB 2583; 2 ♂♂  
(5.7*, 7.0 mm CW), 1 ♀ (7.6 mm CW), Praia da 
Ponta do Sambaqui, Florianópolis (SC), Brazil, 
Apr. 2007, CCDB 1894; 1 ♂  (7.7 mm CW), 2 ♀♀ 
(7.0, 9.1* mm CW), Praia dos Ingleses, Bombinhas 
(SC), Brazil, Apr. 2007, CCDB 1895.

Diagnosis: Carapace granulate and plicate; 
a single epibranchial spine present, occasionally 
obsolescent; front sinuously triangular; carpus 
2-2.5 times as long as wide, anterior margin with 
3 low, widely set teeth, a 4th occasionally present; 
manus rather long and slender; merus of walking 
legs with a row of spines on anterior margin, that 
of legs 1- and 2-spined at posterodistal angle.

Description: Carapace naked or pubescent, 
covered with granules and short, rough plications; 
about as broad in mid-branchial regions as 
posteriorly.  Front broadly, sinuously triangular, 
sometimes pubescent, with a deep median 
sulcus; no supraocular spine.  Outer orbital 
angle not produced.  A single epibranchial spine, 
occasionally obsolescent.  First moveable antenna 
with a strongly projecting, lamellar lobe, usually 
spine-tipped; 2nd with a large projecting tubercle; 
3rd nearly smooth, flagellum naked.  Outer 
maxilipeds rugose.  Inferior margin of side walls 
with a fringe of plumose hairs.  Merus of chelipeds 
rugose, armed on anterior with a large lobe, usually 
spine-tipped.  Carpus 2-2.5-times as long as 
wide, naked or pubescent, especially on anterior 
margin; covered with large granules tending 
to form a median longitudinal crest, especially 
in young specimens; anterior margin armed 
with 3 low, widely set, spine-tipped teeth, a 4th 
occasionally present; posterior margin with a row 
of large flattened granules, with 1-4 produced into 
spines, and ending distally in a large bifid spine.  
Manus narrow, naked or pubescent, especially on 
proximal margin, covered with scattered granules 
similar to those of carpus; outer margin sometimes 
with a row of short spines and a fringe of hairs, 
particularly in young specimens.  External margin 
of dactylus with a well-defined sulcus from basis 
to tip, on both chelipeds.  Gape of fingers with 
short pubescence.  Walking legs rugose; anterior 
margin of merus and carpus with plumose hairs, all 
segments with long, non-plumose setae; anterior 
margin of merus of leg 1 with 1-5 spines, of leg 2 
with 2-6, of leg 3 with 0-3; merus of legs 1 and 2 
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with 1 or 2 posterodistal spines, 1 also occasionally 
present on leg 3.

Remarks: According to the original descri-
ption, the merus of pereiopod 1 presents between 
2-5 spines, but specimens from southeastern 
Brazil (Rio de Janeiro and São Paulo States) 
may present only 1 spine, extending the range of 
variation of this character.

Phylogenetic analysis

Our phylogeny included 65 specimens 
representing 26 species of the genus Petrolisthes 
and 16 specimens from 10 species and 4 related 
genera.  In total, we generated 14 new partial 16S 
sequences (~550 bp).

Of the 10 parameter sets analyzed by 
direct optimization, the one that produced the 
shortest trees was that for an indel/transition/
transversion ratio of 1:1:1 (parameter set 111, 
Table 2).  The parsimony analysis yielded a single 
most-parsimonious tree of length 1328 (Fig. 
1).  The analysis showed strong consistency, 
well supported by the bootstrap and sensitivity 
analyses, in most nodes that included taxa from 

the Pacific and Atlantic regions in the same clade.  
The most-parsimonious tree (Fig. 1) showed the 
non-separation of the species P. armatus in a 
complex.

Genetic divergence

The multiple sequence alignment for the 
16S gene had 550 positions for 49 Petrolisthes 
specimens and 16 from other related genera.  In 
general, the dendrogram generated by the cluster 
analysis presented the same topology as the 
phylogenetic analysis (Fig. 2).

Genetic distances estimated among the 
Petrolisthes species analyzed herein ranged from 
2.6% (P. robsonae-PN and P. zacae-CL) to 22.0% 
(P. violaceus-CH and P. marginatus-VZ and MX) 
(data not shown); intraspecific divergences ranged 
from 0 (P. tridentatus-VZ) to 5.7% (P. tridentatus-
MX) for 16S (data not shown).

Positional differences between putative 
populations of P. armatus were very limited, 
with a genetic divergence that ranged from 0%-
2.1% for the 16S gene (Table 3).  Even so, 
genetic divergences among Atlantic and Pacific 
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Table 2.  Matrices used in the sensitivity analysis.  The numbers correspond to the ratio of indel/
transition/transversion values



Fig. 1.  Phylogenetic tree of selected species of Petrolisthes and related groups, based on direct optimization analysis of 16S rDNA 
datasets under the parameter set which produced the most-parsimonious tree.  The box at the bottom left indicates the parameter sets 
used in the analysis.  Filled boxes signify that the clade was present.
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Fig. 2.  Dendrogram of the cluster analysis for species of Petrolisthes and related groups, based on a distance analysis using the 
minimum evolution (ME) algorithm of 16S rDNA gene sequences.  Numbers below are significance values for 1000 bootstraps; values 
≤ 50% are not shown.
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populations were generally more pronounced than 
those among Atlantic populations.  Specimens 
from Ecuador showed proximity to specimens 
from the Costa Rican Pacific and surprisingly to 
specimens from the USA (Gulf of Mexico).  Among 
the Atlantic populations, the genetic variability was 
low, showing proximity between populations of 
Panama and Venezuela to those of Brazil (Bahia, 
São Paulo, and Santa Catarina).

DISCUSSION

The present investigation, based on analyses 
of morphology and a partial fragment of 16S 
rDNA, supported the monophyly of P. armatus.  
While we acknowledge the general phylogenetic 
proximity of these specimens, there is no genetic 
justification for a separation into different species, 
rejecting the hypothesis of the possible existence 
of a P .  armatus  complex mentioned in the 
literature (Rodríguez et al. 2005, Hiller et al. 2006).  
However, our data were exclusively generated by 
material from the Americas, and additional genes 
and material covering the entire geographic range 
is necessary to allow a more-comprehensive 
treatment of P. armatus.

Although Petrolisthes is the largest genus 
within the family Porcellanidae, it is recognized 
that species tend to fall into several natural groups, 
some of which were previously discussed by 
Ortmann (1897) (see Haig 1960).  Throughout the 
years, Petrolisthes has been discussed because 
interpretations of species interrelationships were 
ambiguous.  However, specialists recommended 
that any attempt at splitting the genus should be 

postponed until a worldwide basis for this genus 
is available and can be studied, especially from a 
phylogenetic point of view (Haig 1960, Stilmann 
and Reeb 2001, Rodríguez et al. 2006).

In our set of  analyzed species (26 of 
100 recognized species), Petrolisthes can be 
subdivided into 2 main clades, supporting an earlier 
division based on morphological characters (Haig 
1960) and corroborating the subdivision proposed 
by Stillman and Reeb (2001) that named the 2 
groups“smooth”and“spiny”.  Clade A (group I 
or“smooth”) contains P. violaceus Guérin 1831, 
the type species of the genus, and other species 
that share the following morphological features: a 
smooth carapace, the absence of an epibranchial 
spine, and the merus of the pereiopods without 
spines.  This group includes some species of the 
genus Megalobrachium Stimpson 1858; the adult 
forms are more similar to the genera Polyonyx 
Stimpson 1858, Minyocerus Stimpson 1858, 
Pisidia Leach 1820, and Porcellana Lamarck 
1801, in which the basal antennal article is strongly 
produced forward and broadly contacts the margin 
of the carapace, so that the moveable part is 
far removed from the orbit.  On the other hand, 
Megalobrachium larvae share characteristics 
similar to the genera Petrolisthes, Pachycheles 
(Stimpson 1858), Neopisosoma Haig 1960, 
Allopetrolisthes Haig 1960, and Clastotoechus 
Haig 1960; these features are not found in larvae 
of the genera Polyonyx, Minyocerus, Pisidia, or 
Porcellana (Gore 1970 1973, Hernandez et al. 
2002).  According to Rodríguez et al. (2006), 
Megalobrachium constitutes a distinct clade 
from Petrolisthes, and presents a very high 
molecular divergence which could argue in favor 

Table 3. Genetic divergent matrix of the 16S gene among Petrolisthes armatus 
specimens. (USA = United States of America; CRpac = Costa Rica, Pacific coast; EC = 
Ecuador; PAN = Panama; VZ = Venezuela; BR(SP) = Brazil, São Paulo; BR(SC) = Brazil, 
Santa Catarina; BR(BA) = Brazil, Bahia)

P. armatus-USA 0
P. armatus-CRpac 0.015 0
P. armatus-EC 0.017 0.008 0
P. armatus-PAN 0.015 0.011 0.015 0
P. armatus-VZ 0.015 0.011 0.015 0.000 0
P. armatus-BR(SP) 0.019 0.015 0.019 0.000 0.000 0
P. armatus-BR(SP) 0.021 0.017 0.021 0.002 0.002 0.002 0
P. armatus-BR(SC) 0.021 0.017 0.021 0.002 0.002 0.002 0.000 0
P. armatus-BR(SC) 0.021 0.017 0.021 0.002 0.000 0.002 0.004 0.004 0
P. armatus-BR(SC) 0.021 0.017 0.021 0.002 0.000 0.002 0.004 0.004 0.000 0
P. armatus-BR(BA) 0.019 0.015 0.019 0.002 0.002 0.008 0.009 0.009 0.009 0.009 0
P. armatus-BR(BA) 0.017 0.013 0.017 0.000 0.000 0.006 0.008 0.008 0.008 0.008 0.002 0
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of the resurrection of 2 previously separated 
genera of Megalobrachium Stimpson 1858 and 
Porcellanopsis Rathbun 1910, synonymized to 
the first by Haig (1956).  Meanwhile, the proximity 
between some members of group I (“smooth”of 
Stillman and Reeb 2001) assigned as Petrolisthes 
and some members of the genus Megalobrachium 
evidenced in this work remains unclear.  This 
result, based on a reduced molecular dataset 
for both genera, raises new questions about the 
phylogenetic relation of these genera and should 
be investigated in the future.

The largest Petrolisthes group (clade B, 
group II or“spiny”of Stillman and Reeb 2001) 
is characterized by species bearing teeth or 
spines on the anterior margin of the carpus 
and 1 or 2 posterodistal spines on the merus of 
pereiopod 1.  In addition, members of this group 
may share any or all the following morphological 
characters: epibranchial and supraorbital spines; 
a row of spines on the outer margin of the manus 
and on the anterior margin of the pereiopods; 
and spines on the frontal, orbital, and lateral 
margins of the carapace.  Most species of this 
group show transverse piliferous striations on the 
carapace and were described as a“P. galathinus 
group”and“P. lamarcki group”by Ortmann 
(1897).  Posteriorly, the results of Hiller et al. (2006) 
based on molecular and geometric morphological 
data, strongly supported the validity of 6 nominal 
species comprising the P. galathinus complex (i.e., 
P. galathinus, P. caribensis, P. columbiensis, P. 
sanmartini, P. bolivariensis, and the more-distantly 
related, P. rosariensis).  The results of our study 
agree with those conclusions, of P. rosariensis 
being separate from the main P. galathinus group 
and more-closely related to P. glasseli, a species 
that is also closely related to P. galathinus.

The P. armatus clade was shown to be a 
sister clade of the P. robsonae + P. zacae group: 
the first species was allied to P. armatus from 
which it may be distinguished morphologically 
by the presence of 2, instead of 3, spines on the 
carpus of the chelipeds, the reduced number 
of spines on the merus of the 1st 2 pairs of 
pereiopods, and the distinct anterodistal spine 
on the carpus of the pereiopods (Haig 1960).  
Rodríguez et al. (2006) found close relationships 
among P. marginatus, P. politus, and P. armatus.  
However, our analysis indicated a remote proximity 
among them, corroborating Haig’s conclusions 
based on morphological data.

Adults of P. armatus are known to show 
considerable morphological plasticity throughout 

its geographical distribution range (Chace 1956, 
Haig 1960, Gore 1972).  Some of these authors 
speculated that the variation seen in extreme 
examples of the Pacific and eastern Atlantic adults 
would, by itself, be sufficient to establish specific 
recognition between the members of the 2 regions.  
Considerable differences were also found when 
comparing larval morphology of Atlantic and 
Pacific specimens (Gore 1972).  Nevertheless, 
our analysis showed that P. armatus formed a 
monophyletic clade, composed of specimens from 
different locations across its distributions along 
the Atlantic and Pacific coasts of the Americas.  
This result was corroborated by the morphological 
analysis, in which all variations observed were 
expected and insufficient to distinguish different 
morphological patterns.  The present study did not 
include specimens from African populations, which 
should be the next step in clarifying phylogenetic 
relationships between African and Pacific-Atlantic 
populations.

In recent decapod taxonomy, some popu-
lations that were long regarded as geographically 
separated morphological variants were assigned 
to a full species rank based on molecular results 
(Sarver et al. 1998 2000, Fratini and Vannini 2002, 
Spivak and Schubart 2003, Schubart et al. 2005, 
Mantelatto et al. 2006 2009b).  Additionally, some 
studies demonstrated intraspecific differences 
along latitudinal gradients in the reproductive 
biology of decapods (Clarke 1987, Wehrtmann 
and Kattner 1998, Lardies and Wehrtmann 2001), 
including some populations of P. armatus from 
Brazil and Costa Rica (Wehrtmann et al. 2011).

The reasons for minor latitudinal differences 
in genetic features of marine decapods, as seen 
in P. armatus (Fig. 2), are still being discussed 
(see references above).  This phenomenon may 
be related to larval characteristics.  Petrolisthes 
armatus is characterized by having a larval 
development, which consists of 2 zoeae and 
1 megalopal stage with a duration of 1-2 mo 
(Gore 1970 1972, Brossi-Garcia and Moreira 
1996); the megalopal stage spends part of its 
time in oceanic waters before colonizing near-
shore habitats (Miranda and Mantelatto 2009).  
Thus, the possibility of mixing of P. armatus 
larvae/megalopae along the At lant ic  gyre 
system is 1 hypothesis to explain the genetic 
similarities observed among populations from 
the western Atlantic and also from populations 
along the Pacific side of the Isthmus of Panama.  
Moreover, intertidal decapod species of Sesarma, 
Petrolisthes, and Alpheus show the smallest 
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values of transisthmian differentiation, which may 
be explained by a genetic connection between 
Pacific and Atlantic populations even when the 
only salt-water connection between the 2 sides 
consists of swamps (Lessios 2008).  Such a 
scenario may further support our finding of no 
considerable genetic differences between eastern 
Pacific and western Atlantic populations of P. 
armatus, a situation already reported for other 
intertidal decapods (Lessios 2008).

In our dataset ,  the groups formed by 
Pachycheles and Neopisosoma were sister clades 
to the Petrolisthes group.  Our analysis supported 
the validity of Neopisosoma angustifrons (Benedict 
1901) being separate from the Pachycheles 
genus (Fig. 2), corroborating Rodríguez’s et al. 
(2006) conclusions.  Considering that the genus 
Neopisosoma is composed of 7 valid species 
(Haig 1960, Werding 1986), it is premature to 
consider those results as a definitive resolution 
for this group.  Our continuing efforts are focused 
on adding representative taxa and combining 
molecular and morphological information on 
Pachycheles and Neopisosoma (Miranda and 
Mantelatto unpubl. data), which may contribute to 
clarifying the enigmatic status of these 2 genera.  
The present study showed that there is no clear 
separation among selected Porcellanidae genera 
from the American Atlantic and Pacific Oceans, 
as was assumed by previous studies (Stillman 
and Reeb 2001, Rodríguez et al. 2006).  These 
assemblages seem to be a natural group that 
makes it impossible to separately study them in a 
phylogenetic context.

Our findings are in accordance with previous 
studies that discussed the great complexity 
within members of Petrolisthes, Pachycheles, 
and Neopisosoma.  Pending the inclusion of 
additional genes and specimens from Africa and 
other areas of American waters in future analyses, 
the molecular data presented here confirm the 
monophyly of a well-defined P. armatus group in 
the genus.
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