Zoological Studies

Vol. 54, 2015

Cymothoa frontalis, a cymothoid isopod parasitizing the belonid fish Strongylura strongylura from the Malabar Coast (Kerala, India): redescription, description, prevalence and life cycle

Aneesh Panakkool Thamban1, Sudha Kappalli1*, Helna Ameri Kottarathil1, Anilkumar Gopinathan2 and Trilles Jean Paul3

1Post Graduate Department of Zoology and Research Centre, Sree Narayana College, Kannur 670 007, India
2School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
3UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Equipe Adaptation Ecophysiologique et Ontogenèse, University of Montpellier 2, CC. 092, 34095 Montpellier, Cedex 05, France

Abstract
Background: Cymothoa frontalis Milne Edward, 1840 is a very poorly described cymothoid, notwithstanding the previous redescription of the female. Pertinently, to date, the host of C. frontalis has not been identified with adequate precision. Most of the descriptions of cymothoids carried out hitherto were based primarily on females, but practically ignoring other life cycle stages. The present paper redescribes the female and describes other life cycle stages of the species C. frontalis to get better precision in their identification.
Results:
The female phase of C. frontalis is redescribed according to type specimens extant in the NMNH, Paris, and also by the data obtained from live specimens collected during the present study. The general morphology and appendages of various life cycle stages of the species are described. Among 80 fish species from 35 families examined, C. frontalis was recovered only from Strongylura strongylura signifying its oligoxenous host specificity, the prevalence and intensity being 68.65% and 1.9, respectively. Each host fish in more than 85% of the population was infested with a pair of C. frontalis, in three combinations, predominantly with male-female pair (70.9%). C. frontalis exhibited strict site specificity attaching to the buccal cavity of the host fish. The study has also identified three major phases (marsupial, free living and infective) in the life cycle of C. frontalis. The zygotic-staged marsupiumites were developed through five sequential ontogenetic stages. The manca released from the marsupium become infective after a brief period of free swimming life. During the infective phase, C. frontalis completes remaining life cycle stages with successive moulting. Further, six successive stages of the ovigerous females have also been identified.
Conclusions: The present redescription of the female and the description of transitional, male, juvenile and larvae of C. frontalis facilitate precise identification of the species at any stage of the life cycle. Further, the strict host and site specificities of the parasite, as borne out from the present study, and its high degree of prevalence in the host make C. frontalis as an ideal model organism to study the strategies to be adopted for the management of parasites infesting edible fishes.

Key words: Cymothoa frontalis; Cymothoidae; Redescription; Description; Prevalence; Life cycle; Strongylura.

*Correspondence: E-mail: pdellape@fcnym.unlp.edu.ar