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Anguilla japonica seedling production is urgently required for eel aquaculture due to the species’ severely 
dwindling population. This study aimed to understand androgenic modulation of the primary ovarian 
growth, a critical development phase in females, in this semelparous fish. Through histological analysis, 
primordial to primary follicle transition was observed before hormone injection, and eels injected with SPH 
+ MT showed greater synchronous follicle development than those injected with SPH alone. An in vivo 
experiment revealed a positive correlation (p < 0.05, r = 0.94) between the mRNA expression of arα and 
increasing gonadal somatic index (GSI) < 0.75% before SPH injection. Another positive correlation was 
seen between arβ expression and GSI (p < 0.05, r = 0.97) after weekly SPH injections for three weeks. 
fshr expression was high in the SPH + MT-injected group. Significantly high fshr mRNA levels were found 
after weekly MT injections for two weeks (p < 0.05), whereas the expression levels dropped after flutamide 
injection. arα and arβ expressions revealed different patterns before and after SPH induction. In this study, 
androgen modulation was found with regard to ARs expressions during primary growth and the primordial 
to primary follicle transition prior to hormone induction. This modulation continuously affected fshr 
expression and vitellogenic development after SPH induction during ovarian growth in the Japanese eel.
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BACKGROUND 

Primary ovarian development in fish is similar to 
that of mammals (Kezele et al. 2002; Luckenbach et 
al. 2008), probably because the initial development of 
the ovary is conserved across evolution in vertebrates 
(Das and Arur 2017; Grier et al. 2016; Juengel et al. 
2002). Initial ovarian development and recruitment 
critically affect female reproductive fertility and ovarian 
reserves (McGee and Hsueh 2000; Peters 1969; Ueno et 
al. 1989). During primary growth, primordial follicles 
are activated from their dormant state (Adhikari and 
Liu 2009), followed by a transition from primordial 
to primary follicles (Kezele and Skinner 2003). In this 
critical process, oocytes in the primordial follicles 
develop from the chromatin nucleolar stage to the 
perinucleolar stage, during which meiotic division is 

suspended in prophase I. 
During the ovary’s initial growth, mesonephron-

derived development still remains after gonadal 
sex differentiation. Regulation of oocyte meiosis 
is species-dependent before the onset of puberty. 
In many species, the onset of immediate meiosis is 
initiated simultaneously with sex differentiation. In 
others, a prolonged period separates the gonadal sex 
differentiation and the onset of meiosis just prior to 
the puberty. This delayed meiosis is regulated by 
mesonephron-secreted meiosis-inducing substances 
and steroid hormones (progesterone and estradiol) 
(Byskov 1979; Dutta et al. 2016). In contrast, little or 
no steroid hormone can be detected immediately before 
meiosis begins. The initial development of the ovary 
is correlated with a low level of steroid hormone from 
mesonephron and ovigerous cords. In the Japanese eel 
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life cycle, a long duration of prepuberty is observed 
prior to reproductive migration. Little is known about 
whether the regulation of meiosis affects this long hiatus 
in early ovarian development.

In semelparous eels, millions of ovarian follicles 
set out for development (Edel 1975). The initial 
ovarian development, which includes folliculogenesis 
and steroidogenesis, is an important preparation for 
previtellogenic (primary) development, and is believed 
to be regulated by many transcriptional factors (Pangas 
et al. 2006; Rajkovic et al. 2004; Sen and Hammes 
2010; Shiina et al. 2006), intra-ovarian factors (Fortune 
2003; McGee and Hsueh 2000; Skinner 2005), and 
steroid hormones (Juengel et al. 2002; Kezele and 
Skinner 2003; Vendola et al. 1999). Androgens have 
been reported to promote primary growth in primate 
ovaries (Vendola et al. 1999; Weil et al. 1998). 

Two major androgens have been detected in adult 
teleosts. The first, testosterone (T), is thought to be 
an aromatizable precursor of estradiol (E2). The other 
is non-aromatizable 11-Ketotestosterone (11-KT). 
Previous studies detected relatively high plasma levels 
of androgens in female migratory eels (Lokman et al. 
1998). Several studies also showed that female eels 
were observed to synthesize 11-KT and suggest that 
the possible function of 11-KT is to affect lipid droplet 
accumulation and transportation in the previtellogenic 
(PV) ovary (Divers et al. 2010; Matsubara et al. 2003). 
Although other studies revealed that 11-KT on PV 
affect early vitellogenic development (Lokman et al. 
2007; Setiawan et al. 2012), the modulation of androgen 
during primary growth still remains unclear in the 
previtellogenic ovary of female eels. 

The funct ion of  GtH in  pr imary ovar ian 
development remains obscure. Some previous studies 
have shown that FSH promotes follicular cell growth 
in primordial follicles (Allan et al. 2006; Durlej et 
al. 2011; Roy and Albee 2000). In addition, there is 
a small elevation in basal FSH secretion during the 
further development of early follicular recruitment 
(Fortune 1994). The effects of FSH on GtH-dependent 
development during the pre-antral to antral follicle 
transition are generally positive (Gilchrist et al. 2001). 
On the other hand, some studies have reported that the 
actions of FSH on ovarian follicles can be modulated by 
locally produced sex steroids and intra-ovarian factors 
(Hillier 1994; Richards 1994). Studies of teleosts 
have reported that FSH mainly affects E2 synthesis, 
vitellogenesis and vitelogenin uptake in ovarian follicles 
(Kayaba et al. 2008; Nagahama et al. 1993; Tyler et 
al. 1991). However, few functional studies have been 
conducted on FSH in PV ovary primary development. 

Salmon pituitary homogenate (SPH) has been 
used to artificially induce whole ovary development 

since the 1970s (Yamamoto and Yamauchi 1974; 
Yamauchi et al. 1976). This study used SPH injection 
for three weeks as the main induction method to 
force ovarian development, and the androgenic effect 
on developmental difference was investigated via 
exogenous addition of MT. The characterization 
and calculation of follicle stages were histologically 
compared among treatments. The relevant gene 
expressions—arα, arβ and fshr—were investigated 
using relative RT-qPCR after in vivo experiments. 
Further experiments with flutamide injections were 
conducted to test whether AR-mediated actions affect 
gene expression in early ovarian development. To 
further understand how exogenous hormones influence 
relevant gene expression, an in vitro experiment was 
performed using developing ovarian tissue after in vivo 
weekly SPH injections for two weeks. FSH was treated 
as an intra-ovarian regulator of gene expression during 
short-term incubation. In addition, MT was added to 
evaluate whether androgen modulated relevant mRNA 
expression in the early stages of ovary development. 
We aimed to describe androgen modulation under 
SPH-forced early follicle development via histological 
observation, and in vivo and in vitro gene expression 
analyses.

MATERIALS AND METHODS

Animals 

Japanese eels were purchased from an eel culture 
farm (Lukang, Taiwan) and ranged in weight from 500-
650 g. Eels were kept in recirculating filtered freshwater 
at 20 ± 1°C with a 12:12-h light:dark photoperiod 
and feed was supplied twice daily. The eels undergo 
spontaneous starvation during their reproductive 
migration, so feeding was reduced during seawater 
acclimation. After approximately one week of seawater 
acclimation, gonadal maturation was induced by weekly 
intraperitoneal hormone injections. The condition of 
these animals was reviewed 

by the Animal Research Committee of the 
National Taiwan University (approval number, NTU-
103-EL-74). For each weekly injection, eels were 
anesthetized by light bathing in 2-phenoxyethanol 
(0.3 ppm; Sigma-Aldrich), and were euthanatized in 
0.5 ppm for final tissue sampling (Borski and Hodson 
2003). The physical condition was monitored through 
body weight measurements and exterior observations.
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Histological observations of primary ovarian 
growth during hormonal injections 

Thirty eels were randomly distributed throughout 
six tanks (500 liters / tank). Two tanks held each of the 
following three groups: control (n = 10), weekly SPH 
injection for three weeks (n = 10), and weekly SPH 
+ MT injection for three weeks (n = 10). All weekly 
hormone and drug injections were as follows: SPH 
was dissolved in a 0.9% saline solvent (20 mg/kg), 
MT (Sigma-Aldrich) was dissolved in a 1% dimethyl 
sulfoxide (DMSO) (3 mg/kg). The seawater control eels 
received a weekly saline injection followed by different 
sampling times based on the experiment. The seawater 
control eels received a weekly saline injection followed 
by different sampling times based on the experiment. A 
weekly hormone injection was carried out following the 
schedule (Table 1). Ovarian tissue was sampled after 
72 hours from female eels, including controls (female, 
n = 4; male, n = 6), SPH-injected group (female, n = 
3; male, n = 7) and SPH + MT-injected group (female, 
n = 4; male, n = 6), The gonadal somatic index (GSI) 
was calculated as (gonad weight/ body weight) × 
100. Ovarian tissues were cut and fixed in solution 
(2% paraformaldehyde and 2.5% glutaraldehyde) 
for 16 hours. The fixed tissues were dehydrated by 
gradient alcohol concentrations (25%, 50%, 75%, 
95% and 100%). After lamellae was embedded in the 
paraffin (EMS), 5-μm sections were stained using the 
hematoxylin and eosin staining (HE staining) method 
and then examined with light microscopy (Olympus 
corp., Japan) and photography analysis (SPOT Basic 
image capture software, Diagnostic Instruments Inc., 
USA). 

Microscopy examination 

Ovarian follicle characteristic were examined 

using a light microscope (Olympus corp., Japan). 
For each tissue section, nucleated ovarian follicles 
were measured and categorized according to methods 
modified from previous studies (Abascal and Medina 
2005; Fortune 2003; Menn et al. 2007) (Table 2). 
Ovarian tissue sections were stained using HE staining. 
Thirty nucleated ovarian follicles were selected from 
each tissue section for follicle stage numbering, and 
the calculation was repeated in three continuous 
sections for each individual. Follicle stage percentage 
was calculated from the repeated counts of the follicle 
number in IA, IB or IC follicles. The developmental 
levels from the earliest (IA) to the most advanced (IC) 
stage is presented as the depth of the grey tint (from 
light to dark) on the bar graph.

in vivo investigation of arα, arβ, and fshr 
expression after weekly hormone injection 
during early ovarian development

Forty eels were randomly distributed throughout 
nine tanks (500 liters/tank). Three tanks held each of 
the following three groups: controls (n = 14), weekly 
SPH injection for three weeks (n = 13), and weekly 
SPH + MT injection for three weeks (n = 13). All 
weekly hormone and drug injections were as follows: 
SPH was dissolved in a 0.9% saline solvent (20 mg/kg), 
MT (Sigma-Aldrich) was dissolved in a 1% dimethyl 
sulfoxide (DMSO) (3 mg/kg). The seawater control eels 
received a weekly saline injection followed by different 
sampling times based on the experiment. The seawater 
control eels a received weekly saline injection followed 
by different sampling times based on the experiment. 
A weekly hormone injection was carried out following 
the schedule (Table 2). Ovarian tissue was sampled 
from female eels 72 hours after the last injection in 
each group, including controls (female, n = 6; male, n 
= 8), SPH-injected group (female, n = 9; male, n = 4) 

Table 1.  Procedures for in vivo experiments

Treatments SPH (20 mg/kg) MT (3 mg/kg) Flutamide (6 mg/kg)

in vivo experiments (1 dose/ week)
Seawater control - - -
SPH 3 doses - -
SPH + MT 3 doses 3 doses -

in vivo experiments (1 dose/ week) with AR antagonist
Seawater control - - -
SPH 2 doses - -
SPH + FLUT 2 doses - (1 dose/ every 12 hour) *4 doses after 2

SPH injections
MT - 2 doses -
MT + FLUT - 2 doses (1 dose/ every 12 hour) *4 doses after 2

MT injections
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and SPH+MT-injected group (female, n = 6; male, n = 
8). The gonadal somatic index (GSI) was calculated as 
(gonad weight/ body weight) × 100. Ovarian tissue was 
collected for total RNA extraction.

in vivo investigation of fshr regulation 
following treatment with an AR agonist and 
antagonist in early ovarian development 

 
Fifty eels were randomly distributed throughout 

ten tanks (500 liters / tank). Two tanks held each of the 
following five groups: controls (n = 10), SPH (n = 10), 
SPH+FLUT (n = 10), MT (n = 10), and MT + FLUT 
(n = 10). All weekly hormone and drug injections were 
as follows: SPH was dissolved in a 0.9% saline solvent 
(20 mg/kg). MT (Sigma-Aldrich) was dissolved in a 1% 
dimethyl sulfoxide (DMSO) (3 mg/kg). FLUT (Sigma-
Aldrich) was dissolved in a 1% DMSO (6 mg/kg) 
(Sigma-Aldrich). The seawater control eels received a 
weekly saline injection followed by different sampling 
times based on the experiment. Two weekly SPH 
injections were utilized to force ovarian growth. FLUT 
was utilized as an AR antagonist. In this experiment, 
eels received two weekly hormone injections, then a 
total of four FLUT doses every twelve hours (Table 

2). Ovarian tissues from female eels including controls 
(female, n = 4; male, n = 6), SPH (female, n = 4; male, 
n = 6), SPH + FLUT (female, n = 4; male, n = 6), MT 
(female, n = 7; male, n = 3), and MT + FLUT (female, 
n = 4; male, n = 6) were sampled 6 hours after the last 
FLUT injection, respectively, and was collected for total 
RNA extraction and qPCR analysis. 

Detection of arα and arβ via in vitro incubation 
with FSH, MT, and FSH + MT after weekly SPH 
injection for two weeks 

 
Ovarian tissues were taken 6 hours after the 

second SPH injection from female eels (GSI ≤ 0.9%). 
Tissue fragments were gently washed twice with eel 
Ringer’s solution (150 mM NaCl, 3 mM KCl, 3.5 mM 
MgCl2, 5 mM CaCl2 and 10 mM HEPES; pH 7.4), and 
transferred into a basic culture medium (L-15 medium, 
1.7 mM proline, 0.1 mM aspartic acid, 0.1 mM glutamic 
acid, 0.5% bovine serum albumin, and 10 mM HEPES; 
pH 7.4). Media contained either FSH (10 ng) (Sigma-
Aldrich), MT (5 nM), both FSH and MT or no hormone 
(control). The final hormone concentration was achieved 
by serial dilutions with the basic culture medium, and 
all the L-15 media were filtered with 0.22-μm vacuum-

Table 2.  Categorization of primary ovarian development in the previtellogenic ovary

Stage Characterization

Stage IA (primordial follicle stage): Oocyte with chromatin-nucleolus and strongly basophilic cytoplasm (deep blue) 
are displayed with few oil droplets. Development of the oocyte surroundings cannot be observed, and the diameter of 
the follicles is < 50 μm

Stage IB (primordial-primary follicle transition stage): The nucleus of the oocyte is transferred from chromatin-
nucleolus to perinucleolus and oil droplets accumulate in the cytoplasm. The diameter of the follicles is < 150 μm

Stage IC (primary follicle stage): All of the ovarian follicles arrest in the perinuleolus stage, and the weak basophilic 
background of cytoplasm can be seen. The number of oil droplets is increasing in the cytoplasm. Thicker follicular 
surroundings are shown around the oocyte. The diameter of the follicles is < 200 μm
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driven sterile filters (Merck Millipore Corp.). Ovarian 
tissue lamellae were cut from ovarian tissue fragments, 
just submerged in culture media, and incubated at 20 ± 
0.5°C. After a 2-hour pre-culture step, ovarian lamellae 
were randomly distributed throughout the culture 
dish. Subsequent in vitro studies began. To examine 
serial mRNA variation within 24-h tissue cultures, the 
ovarian lamellae were incubated in the basic culture 
medium after the pre-culture step, then sampled after 
0.5, 1, 6, 12, and 24 hours. For hormone treatment, the 
ovarian tissue was incubated with FSH, MT, or FSH 
+ MT media after the pre-culture step. Ovarian tissue 
lamellae were sampled in triplicate after 1- and 12- hour 
incubations for total RNA extraction using 0.5 ml ice-
cold Trizol solution (Thermo Fisher Scientific, USA). 
The cDNA library was constructed using pAW109 
RNA (Thermo Fisher Scientific, USA) as a standard for 
relative qPCR. 

Total RNA extraction and cDNA synthesis 

Total RNA was purified from homogenized 
ovarian tissue using Trizol reagent (Thermo Fisher 
Scientific, USA) according to established procedures. 
Quantification, purity, and RNA integrity were evaluated 
by absorbance at 260 and 280 nm using a NanoDrop 
ND-1000 UV-visible spectrophotometer (Thermo Fisher 
Scientific, USA) and agarose gel electrophoresis. High-
quality RNA with an A260/A280 ratio above 1.8 was 
used for cDNA synthesis. Total cDNA for the real-
time polymerase chain reaction (PCR) was generated 
from 1 μg of total RNA utilizing the ImProm-II reverse 
transcription system (Promega Corp.) with random and 
poly-T primers.

Quantitative reverse transcription PCR
 
Ovarian cDNA was serially two-fold diluted 

to determine PCR efficiency, and the standard was 
around E > 95%, R2 > 0.95. The cDNA was also four-
fold diluted for the real-time PCR reaction. Relative-
quantitative real-time PCR analysis using SYBR 
Green detection was performed on an iQ5 PCR reactor 
(Bio-Rad, USA) using standard software settings. 
These included an adaptive baseline for background 
detection and a moving average and amplification-based 
threshold settings with the built-in FAM/SYBR filter 
(excitation wavelength: 492 nm; emission wavelength: 
516 nm). Reactions were performed using 5 μl cDNA, 
10 nmol forward and reverse primers, and 10 μl SYBR 
Green Master Mix (Kapa Biosystems, USA) for a total 
volume of 20 μl. The amplification conditions were 
95°C for 3 minutes, followed by 40 cycles of 95°C 
for 20 seconds and then 59°C for 30 seconds. The 
melting curve was detected from 55°C to 95°C holding 
at 30 seconds for each 0.5°C, and a single peak was 
confirmed as a single qPCR product. Amplification of 
the eels’ 18S rRNA was set as an internal standard for in 
vivo mRNA expression. In addition, M-CSF amplicons 
were amplified from pAW109 cDNA using GM20 
(5’-TCGGACGCAGGCCTTGTCATG-3’) and AW111 
(5’-GAACAGTTGAAAGATCCAGTG-3’) primers as a 
standard for in vitro mRNA expression. The primers for 
arα, arβ, fshr, and 18S rRNA are shown in table 3. 

Statistical Analyses 

Statistical analyses were performed with SPSS 
Statistics v. 22 (IBM, USA). Significant differences 
between treatment groups were evaluated using one-
way analysis of variance (ANOVA) after testing 
for normality and variance homogeneity. Statistical 
differences among groups were analyzed using LSD 
post hoc tests. The significance level was set at α = 
0.05, and p < 0.05 indicated significant difference. 
Correlations between mRNA expression levels and GSI 

Table 3.  Primers for the quantitative reverse transcription PCR

Gene name Accession number Primers Amplicon

ARα AB023960 Forward: 5’-CAGCACCTCCTAGACATTGTG-3’ 
Reverse: 5’-CTCAGACGATCTCCTAGTTCGT-3’ 

194 bp

ARβ AB025361 Forward: 5’-GGAACCCAAGAAAGTGTC-3’ 
Reverse:5’-GCAACCTCATTCGTCAAG-3’ 

131 bp

FSHR AB360713 Forward: 5’-ATCACCGTGTCACACTCCAA-3’ 
Reverse: 5’-CTGGCGAGGATGAAGAAGTC-3’ 

122 bp

18SrRNA AY695889 Forward: 5’-CGCAAGACGGACGAAAGCGAAA-3’ 
Reverse: 5’-CGGATCGCTAGTTGGCATCGTT-3’ 

128 bp
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were analyzed using Spearman’s rho correlation. 

RESULTS 

Histological comparison among the control, 
SPH, and SPH + MT groups 

Initial previtellogenic ovaries generally contained 
the ovarian follicle, which contained a chromatin-
nucleolus oocyte with strong basophilic (deep blue) 
cytoplasmic contents and several oil droplets (Table 
2). In addition, a thin and flattened follicular layer 
surrounded the oocyte with thick connective tissue (Fig. 
1A, GSI = 0.42%; 1B, GSI = 0.46%; 1C, GSI = 0.5%; 
1D, GSI = 0.75%). Slow initial growth was observed 
with IA and IB follicles in the control group. 

The three weekly SPH and SPH + MT injections 
forced further follicular development. From these 
conditions, the hues of ovarian follicles turned a weak 
basophilic color (light violet) with greater oil droplet 
accumulation. IC follicles were especially evident in 
the ovaries of SPH + MT-injected eels. In the SPH-
injected eels, IA (primordial follicles, small follicles) 
and IB follicle were observed in the ovaries (Fig. 1E, 

GSI = 0.63%; 1F, GSI = 1.02%; 1G, GSI = 1.07%). In 
contrast, IB (primordial to primary transition) and IC 
(primary follicle) follicles were apparent in the ovaries 
of the SPH + MT-injected eels (Fig. 1H, GSI = 0.93%; 
1I, GSI = 1.34%; 1J, GSI = 1.38%; 1K, GSI = 1.41%).

Initial ovarian development was characterized 
based on previous studies (Abascal and Medina 2005; 
Fortune 2003; Menn et al. 2007), and the percentage 
of ovarian follicle stage was displayed (Fig. 2). Clear 
increases in GSI were observed after the SPH and SPH 
+ MT injections (p < 0.05; Fig. 2A). In the control 
group, the ovarian composition showed 13-41% in IA 
follicles (Fig. 2B) and 59-87% in IB follicles (Fig. 2C), 
with a GSI ranging from 0.42-0.75% (Fig. 3A). In the 
SPH-injected group, the ovarian composition (GSI = 
0.63-1.07%; Fig. 3B) was 7.8-11% in IA follicles (Fig. 
2B), 84-90% in IB follicles (Fig. 2C) and 7.8% in IC 
follicles (Fig. 2D). In the SPH + MT-injected group, the 
composition of ovaries (GSI = 0.93-1.41%; Fig. 3C) was 
6-7% in IA follicles (Fig. 2B), 81-100% in IB follicles 
(Fig. 2C) and 9-18% in IC follicles (Fig. 2D). In 
hormone-responded eels (GSI > 1%), ovarian follicles 
were seen in the IA, IB and IC stages. Although an eel 
(GSI = 0.93%) showed GSI < 1% with developing IB 
follicles, greater IC follicles were observed in most of 

Fig. 1.  Histological comparison of ovarian development among the control and three weekly SPH- and SPH + MT- injected groups. Histological 
analyses are shown in controls (A, GSI = 0.42%; B, GSI = 0.46%; C, GSI = 0.5%; D, GSI = 0.75%), weekly SPH injection for three weeks (E, GSI = 
0.63%; F, GSI = 1.02%; G, GSI = 1.07%) and weekly SPH + MT for three weeks (H, GSI = 0.93%; I, GSI = 1.34%; J, GSI = 1.38%; K, GSI = 1.41%). 
Stage IA follicles are labeled as A; Stage IB follicles are labeled as B; Stage IC follicles are labeled as C. Ovarian tissue was sampled 72 hours after 
the third injection. Sections underwent HE staining. 10-fold magnified LM images were obtained by digital camera photography. Scale bar = 100 μm.

A B C D

E F G

H I J K
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the SPH + MT-injected eels. In contrast to SPH-injected 
eels, no statistical difference was found between SPH 
and SPH + MT (Fig. 2D). However, the individual (GSI 
> 1%) showed greater IC follicles after weekly SPH + 
MT injections (Fig. 3B, C). 

Detection of arα, arβ, and fshr expression after 
three weekly artificial hormone injections 

Relative fshr expression levels in the in vivo 

Fig. 2.  Calculation of follicle stage among female eels undergoing 
hormonal induction of ovary development. (A) Ovarian development 
was demonstrated by GSI, and GSI percentage was calculated as 
mean ± SD (control, n = 4; SPH, n = 3 and SPH + MT, n = 4). Stage 
IA, IB, and IC follicles were categorized as the characteristics for 
follicle stage calculation among female eels in the control, weekly 
SPH-injected, and weekly SPH + MT-injected groups. Each stage 
calculation is displayed in (B) stage IA follicles, (C) stage IB follicles, 
and (D) stage IC follicles. Significant differences are compared using 
one-way ANOVA and LSD post hoc tests; p < 0.05.

Fig. 3.  The ovarian composition of female eel undergoing hormonal 
induction in three stages: IA, IB, and IC (the grey tint from light to 
dark). Stage was categorized as the characteristics for follicle stage 
calculation. GSI was measured and is shown in each individual. 
The ovary composition is shown in each percentage bar. The stage 
composition is shown among female eels in (A) the control group, 
(B) weekly SPH injection for three weeks and (C) weekly SPH + MT 
injection for three weeks.

(A)

(B)

(C)

(D)

(A)

(B)

(C)
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hormone induction experiments increased significantly 
(p < 0.05) in the SPH + MT injection group compared to 
other groups (Fig. 4A). arα expression levels were not 
significantly different among groups (Fig. 4B), whereas 
arβ showed high levels in the SPH-injected group 
(p < 0.05; Fig. 4C). The above data were analyzed by 
plotting mRNA expression against GSI data. Limited 
ovarian development was observed (GSI < 1.2%) among 
the six eels in the control group (Fig. 5A, D and G), and 
arα expression showed a significant positive correlation 
with slight increases in GSI (p < 0.05, r = 0.94). In 

addition, a non-significantly negative trend was seen 
between fshr expression and GSI (Fig. 5A). Following 
the three weeks of SPH injections (Fig. 5B, E and H), 
further development of eels’ ovaries was observed, 
and arβ showed a strong positive correlation with 
GSI (p < 0.05, r = 0.97) after SPH injection. Although 
increased GSI was detected in the SPH + MT group (Fig. 
5C, F and I), it was negatively correlated with arα, arβ, 
and fshr expression levels. Individuals in the SPH + MT 
group showed high levels of fshr expression compared 
to the control and SPH groups. 

in vivo fshr expression after treatment with AR 
agonist and antagonist

 
The above weekly hormone injection experiments 

demonstrated relatively high levels of fshr in the SPH + 
MT group. In this study, MT and FLUT function as an 
agonist and antagonist for AR, respectively. Expression 
levels of fshr significantly increased following weekly 
MT and SPH injections for two weeks (p < 0.05; Fig. 
6A, B), while fshr levels dropped after 4 doses of FLUT 
in the SPH + FLUT (p < 0.05; Fig. 6A) and MT + 
FLUT (Fig. 6B) groups. 

Expression of arα and arβ in ovarian tissue 
cultures with and without hormones

 
Ovarian tissue was cultured eight hours after the 

second weekly SPH injection. arα and arβ expression 
levels were scanned within a 24-hour in vitro incubation 
period (Fig. 7A, B). arα and arβ expression levels 
were relatively lower and stable under the no-treatment 
condition (Fig. 7A, B). Therefore, the cultured tissue 
was sampled after 1 and 12 hours of incubation, and 
non-treated samples were set as time-match controls. 
After 1 hour of incubation, arα and arβ showed high 
expression levels in FSH + MT-treated tissue (Fig. 
8A, C). Furthermore, arα and arβ showed different 
mRNA expression patterns after the 12-hour incubation. 
arα expression remained at a significantly high level 
(p < 0.05) in FSH + MT-treated tissue, and a slight 
increase in arα (p < 0.05) was also observed in FSH-
treated tissue (Fig. 8B). In addition, arβ expression 
dropped after 12 hours in the FSH + MT-treated tissue, 
whereas the expression was maintained at a higher level 
in the 12-hour MT-treated tissue (Fig. 8D). 

DISCUSSION 

Significantly high levels of androgens are detected 
in the plasma of both wild (Lokman et al. 1998) and 
SPH-injected female eels (Matsubara et al. 2005) at 

Fig. 4.  in vivo mRNA expression of arα, arβ, and fshr after weekly 
hormone injection for three weeks. Relative mRNA expression of 
(A) arα, (B) arβ, and (C) fshr among the control (n = 6), SPH (n = 9) 
and SPH + MT (n = 6) groups. The mRNA of 18S rRNA was used as 
the internal standard for relative mRNA normalized quantification. 
The mRNA expression data from female eels’ ovaries were collected 
and calculated as mean ± SD. Statistically significant differences are 
identified by one-way ANOVA and LSD post hoc tests. p < 0.05 is 
considered significant.

(A)

(B)

(C)
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A B C

D E F

G H I

the onset of natural spawning migration. In teleosts, 
androgens are the major hormones that affect male 
reproduction (Miura et al. 1991). Androgens were 
previously thought to be a potent precursor for estrogen 

synthesis, and increasing evidence has revealed that 
androgens affect reproductive fertility in females 
(Kortner et al. 2009; Prizant et al. 2014; Walters et al. 
2008). The current study shows that androgen/AR action 

Fig. 5.  Correlations between gene (arα, arβ, and fshr) expression and GSI. Correlations between gene expression and GSI are displayed. (A, B, and 
C) are correlations between fshr expression and GSI. (D, E and F) are correlations between arα expression and GSI. (G, H, and I) are correlations 
between arβ expression and GSI. The three groups displayed are the control (A, D, and G; n = 6), weekly SPH injection for three weeks (B, E and 
H; n = 9) and weekly SPH+MT injection for three weeks (C, F and I; n = 6). The correlation between mRNA expression and previtellogenic ovary 
growth condition was analyzed using Spearman’s rho correlations. GSI is plotted against the mRNA expression level. p < 0.05 indicates significant 
correlation, and r-value represents the positive or negative correlation coefficient.

Fig. 6.  in vivo mRNA expression of fshr following AR’s agonist and antagonist treatments.  Ovarian tissue was collected from female eels. (A) 
Controls, n = 4; SPH, n = 4; SPH + FLUT, n = 4. (B) Controls, n = 4; MT, n = 7; MT + FLUT, n = 4. The mRNA expression data from female eels’ 
ovaries are presented as the mean ± SD, and statistically significant differences were determined via one-way ANOVA and LSD post hoc tests 
(p < 0.05).

(A) (B)
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(C)

(A)

(A)

(D)

(B)

(B)

Fig. 8.  in vitro detection of arα and arβ expression during ovarian tissue culture with and without hormone treatment. mRNA expression was 
detected after FSH, MT, or FSH + MT treatments. ara expression is shown after (A) 1 and (B) 12 hours of hormonal treatments; arβ expression is 
shown after (C) 1 and (D) 12 hours of hormonal treatments. Relative mRNA expression data are presented as mean ± SD, and statistically significant 
differences were determined by one-way ANOVA and LSD post hoc tests (p < 0.05).

Fig. 7.  in vitro detection of arα and arβ expression during ovarian tissue culture within 24 hours. The serial time course of mRNA expression was 
screened within 24 hours. mRNA expression patterns of (A) arα and (B) arβ within 24 hours in L-15 medium tissue culture without treatment. 
Quantitative mRNA expression data are presented as the mean ± SD, and statistically significant differences were determined by one-way ANOVA 
and LSD post hoc tests (p <0.05).
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affects gene expression in early previtellogenic ovary 
development. This androgenic modulation was studied 
through in vivo or in vitro MT/ flutamide treatment. 
The interaction between androgen/AR and FSH/
FSHR actions is seen in early ovarian development, 
and androgen/AR actions may play an important 
role in modulating primary follicle development and 
maintaining ovarian follicle growth. 

The regulation of initial ovarian development is 
functionally and structurally conserved across evolution 
in vertebrates (Das and Arur 2017; Grier et al. 2016). 
However, in the viviparous ovary, rigorous selection 
of dominant follicles takes places before antral follicle 
formation (McGee and Hsueh 2000). On the other 
hand, millions of ovarian follicles maintain further 
vitellogenic development for the ovarian maturation 
in semelparous eels. The effect of primary growth on 
ovarian fecundity and fertility remains to be studied in 
oviparous eels.

In female eels, primordial follicle and the 
primordial to primary transition follicle are generally 
found in the ovary (GSI < 0.75%), and this condition 
is  always observed during the previtellogenic 
developmental state. In hormone-responding eels (GSI 
> 1%), the SPH + MT-injected eels showed higher GSI 
than the SPH-injected individuals. Although primordial 
to primary transition follicles were found in SPH-
injected and SPH + MT-injected eels, more primary 
follicles were observed with the main stage of the 
primordial to primary transition follicle in SPH + MT-
injected eels. 

Previous studies on primates have revealed that 
the pool of primordial follicles is a critical source of 
developing follicles over the entire reproductive life 
(Hansen et al. 2008). Relevant gene deficiencies of 
primordial-follicle activation lead to premature ovarian 
failure and female infertility (Reddy et al. 2008; Skinner 
2005). Gonadotropins (GtHs) are the major element of 
pituitary hormones that affect ovarian development. 
Recently, sequences of FSHR cDNA were isolated and 
identified in female Japanese eels’ ovaries (Kazeto et 
al. 2012). In teleosts, FSHR-deficient female fish are 
infertile because vitellogenesis is inhibited from the 
earlier stage of ovarian development (Murozumi et al. 
2014). In female zebrafish, the expression of FSHR 
mRNA is detected in the primary growth follicles (Kwok 
et al. 2005); furthermore, disrupted fshr expression 
causes ovarian development to fail (Zhang et al. 2015). 
In mammals, several studies have reported that FSHR 
is present during early follicle growth in hamsters, pigs, 
baboons, and cows (Goxe et al. 1993; Roy and Albee 
2000; Zachos et al. 2003; Wandji et al. 1992).

Extreme variation in fshr expression was seen 
among individuals of SPH-injected eels. In contrast, 

fshr expression levels were significantly higher after 
SPH + MT injection, but showed an insignificant, 
negative correlation with ovary development. In SPH 
+ MT-injected eels, high fshr expression levels were 
observed, and the primary follicles were apparent in 
developed ovary. 

Similar regulation was shown in a study of FSHR 
expression following flutamide treatment in porcine 
ovaries, and researchers proposed that FSH action is 
essential for primordial follicle development (Durlej 
et al. 2011). Another study also reported that FSHR is 
involved in primordial follicle recruitment (Allan et 
al. 2006; Balla 2003). In addition, a highly significant 
positive correlation between FSH and granulosa cell AR 
mRNA expression was observed in the primate ovary, 
in which FSHR mRNA levels increased with androgen 
treatment (Weil et al. 1999). In a study of the porcine 
ovary, high levels of AR and FSHR mRNA are observed 
in small antral follicles and their expression levels 
decreased with increasing P450 aromatase mRNA and 
follicular growth (Słomczyñska and Tabarowski 2001). 

This study reveals that MT (an androgen and AR 
agonist) might regulate fshr expression. fshr expression 
levels were increased via two weekly MT injections, 
whereas mRNA levels were lowered via FLUT 
treatment after two weekly hormone injections. These 
experiments demonstrate that the eel’s ARs regulate 
androgens in fshr expression. 

In addition, a previous study reported that AR 
mRNA levels significantly increased during primordial 
to primary follicle growth in the bovine ovary (Hampton 
et al. 2004). Moreover, in vitro studies of bovine 
ovaries have demonstrated that ovarian follicles failed 
to enter primary growth since most are still not arrested 
in meiotic prophase I (Yang and Fortune 2008). This 
study suggests that oocytes have achieved meiotic 
prophase I arrest before the primordial to primary 
follicle transition. A similar function was reported in 
primate studies, in which androgen treatments regulated 
significant increases in primordial to primary follicle 
recruitment (Vendola et al. 1999). This process may 
be mediated by IGF-I signaling (Vendola et al. 1999). 
Another study of primates has also shown a positive 
correlation between AR gene expression and cell 
proliferation, and a negative correlation between AR 
gene expression and programmed cell death (Weil et al. 
1998).

In Japanese eels, testosterone (T) has been 
reported to have a positive role in ovarian development 
(Lin et al. 1991). Our previous study revealed that 
ovarian follicle numbers during long-term SPH + MT 
induction may be similar to those of the control group 
(Wang and Lou 2007). In addition, 11-KT synthesis 
has been reported in female eels, and 11-KT may affect 
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lipid droplet accumulation and transportation in the 
previtellogenic (PV) ovary (Matsubara et al. 2003). A 
recent study showed that T supplements inhibit PTEN, 
and this inhibition occurs during the primary oocyte 
transition (Huang et al. 2012). Androgen actions emerge 
during ovarian development in female eels. 

Two types of ARs have been isolated by cDNA 
cloning in Japanese eels (Ikeuchi et al. 1999; Todo et al. 
1999). According to a report (Tosaka et al. 2010), these 
two ARs were found and detected in the follicular layer 
ovaries. However, there is no difference between the two 
ARs’ expressions. In the present study, arα expression 
showed a significant positive correlation with increased 
GSI before SPH injection, whereas the expression of 
arβ exhibited a significant positive correlation after 
SPH injection. Observations of the control and SPH-
injected eel ovaries indicate that arα and arβ may carry 
out respective functions during early previtellogenic 
development. arα was strongly expressed during 
the primordial to primary follicle transition, and arβ 
was expressed in SPH-forced ovarian development. 
In addition, both arα and arβ were suppressed with 
increased GSI after SPH+MT injection; nevertheless, 
synchronous follicle development is apparent in the 
ovaries. AR expression may be constantly maintained, 
and function as the their basic activation in SPH + MT-
treated ovary. 

Expression of arα and arβ showed high levels in 
the one-hour FSH + MT treatment. In addition, high 
arβ expression levels were shown in the MT treatment 
after one hour of incubation. It is still unclear whether 
autoregulation of AR expression (Bagamasbad and 
Denver 2011) occurs in the teleost ovary.

Early ovarian development is regulated by 
numerous important intra-ovarian factors (Adhikari 
and Liu 2009), while ARα and ARβ are crucial for this 
mechanism. Androgens play important roles in initiating 
ovarian development and in modulating synchronous 
development by ARs in female eels. The innate 
expression of two ARs (ARα and ARβ) in the eel ovary 
differs from that of only one AR in other species (Douard 
et al. 2008; Ogino et al. 2009). Thus, their distinct 
functions in the eel ovary needs to be verified. 

CONCLUSIONS
 
The present study demonstrates that androgen 

ac t ion  modula tes  in i t i a l  deve lopment  in  the 
previtellogenic ovary. Although SPH injection is 
a pivotal method for ovarian development, greater 
synchronous development is observed in the MT co-
treated ovary. Moreover, the androgen/ ARs action 
significantly affects fshr expression. in vivo expression 

of both arα and arβ showed significantly different 
patterns before and after SPH injections. These results 
suggest that androgen actions may be involved in 
the global functions of FSH/FSHR and modulate the 
development from early previtellogenic to vitellogenic 
ovary. Androgen may modulate the fecundity and 
fertility in the semelparous eels. The adoption of 
additive androgen with SPH injection is necessary to 
further understand the artificial induction of eel gonadal 
development and maturation. 
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