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Morphological studies in marine turtles might be used to obtain information about changes in 
developmental habitats. Information regarding mortality and growth rates can be obtained by collecting 
data on the size of nesting females on the nesting beach. Morphometric and meristic traits of female 
green turtles (Chelonia mydas) were recorded on Samandağ Beach, Turkey, during the 2006-2016 nesting 
seasons. The study aimed to determine the mean and minimum curved carapace length (CCL) of the 
nesting green turtle and the differences in body size and scute pattern over the years. The relationship 
between the body size of nesting green turtles and latitude was also analysed. CCL and curved carapace 
width (CCW) were recorded for 365 individuals and meristic measures were recorded for 292 individuals. 
The mean CCL and CCW were recorded as 86.9 (± 6.14) and 77.9 (± 5.95) cm, respectively. The minimum 
CCL of nesting green turtles was also recorded as 72 cm. The CCL and CCW showed differences over 
the years and they tended to become smaller from 2006 to 2016. However, this trend was not significant 
according to the Mann-Kendall trend test. The CCL value was negatively correlated with the latitude 
and rejected Bergmann’s rule. There was no relationship between year and carapace scute deviation. 
The Samandağ green turtle population had the smallest nesting green turtle based on CCL. In addition 
to environmental factors, recruitment of females, and growth and mortality rates, and the nesting shift 
between nesting beaches may be some of the reasons behind a smaller value over the years.
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BACKGROUND

Morphological studies have a long history and 
are an integral dynamic part of paleontology and 
biology. Morphological studies also provide us with 
basic information about animal development, evolution, 
biodiversity, biomechanics, behaviour, ecology, and 
physiology (van Dam and Diez 1998). Marine turtles 
offer good opportunities to investigate morphological 
variation because of their global distribution. Marine 
turtles are also ideal model organisms for comparative 
studies of life history variation because they have 
a complex life cycle and they move across very 

different ecological zones (Tiwari and Bjorndal 2000). 
Furthermore, morphological analyses play an important 
role in characterising populations and analysing 
similarities between populations (Figueroa and Alvarado 
1990; van Dam and Diez 1998). 

Morphological variations in factors such as 
body size are well studied in animal biology, and 
there are many theoretical frameworks to interpret 
size differentiation models (Gardner et al. 2011). 
The best-known ecogeographic rule in biology is 
Bergmann’s rule. Bergmann’s rule proposes that a 
positive relationship exists between mean body size 
and latitude, smaller individuals being found at lower 
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latitudes (Ashton and Feldman 2003; Gardner et al. 
2011; Angielczyk et al. 2015). However; support for 
Bergmann’s rule has only been shown for endothermic 
animals (Ashton and Feldman 2003). Regarding the 
ectotherms reptiles group, the effectiveness of the 
Bergmann’s rule has been discussed for each group in 
many studies (Ashton and Feldman 2003; Angielczyk et 
al. 2015; Werner et al. 2016). In those studies where the 
effectiveness of the Bergmann’s rule in the ectotherms 
has been tested, marine turtles were excluded, and there 
is therefore no available information on this issue.

Morphology can be used not only to detect inter-
regional variation (Figueroa and Alvarado 1990; 
Kamezaki and Matsui 1995; Wyneken et al. 1999), but 
also the effect of biotic and abiotic factors in turtles. For 
instance, the marine turtle morphology (carapace size 
and tail length) is used to analyse sexual dimorphism 
in adults (Godley et al. 2002), as well as growth rate 
(i.e., straight or curved carapace size) (Limpus and 
Chaloupka 1997; Bjorndal et al. 2000; Omeyer et al. 
2018). Morphological analyses help us to understand the 
swimming performance of hatchlings and their survival 
rate (Ischer et al. 2009). Morphometrics can be used to 
test the effect of incubation temperature on hatchling 
morphology (Stokes et al. 2006) and carapace scute 
pattern (Kobayashi et al. 2017) and understand how nest 
relocation can have an effect on hatchling phenotype 
(Mast and Carr 1989; Suganuma et al. 1994; Sönmez et 
al. 2011). Detailed data on adult nesting carapace size 
of Mediterranean populations of green turtles (Chelonia 
mydas) is limited, and these data originate from studies 
on nesting ecology and conservation biology (Coley and 
Smart 1992; Geroso et al. 1995; Broderick and Godley 
1996; Stokes et al. 2014). However, there are a few 
studies on the effect of biotic and abiotic factors on the 
morphology of the green turtles using morphological 
data in Mediterranean green turtle populations. For 
example, Broderick et al. (2003) reported variation 
in the reproductive output of marine turtle using 
morphology in Cyprus. Regional differences on flipper 
and body size of green turtle hatchlings between Cyprus 
and South Atlantic populations were also studied (Glen 
et al. 2003). Information on body size and carapace 
scute variations was reported in the relocated nests in 
Cyprus (Özdemir and Türkozan 2006). Similarly, the 
effect of nest relocation on the scute pattern and body 
size on Samandağ Beach was examined (Sönmez et 
al. 2011). Moreover, Ergene et al. (2011) tested the 
relationship between scute patterns and the mortality 
rate of hatchlings. Gender identification was tested 
using the morphological differences between genders 
(Sönmez et al. 2016). 

Body size is commonly measured in field studies 
with wild animals, but a lack of size data causes an 

important gap, especially in Mediterranean green turtle 
populations (Casale et al. 2018). One of the most of 
commonly studied body size traits in marine turtles 
is the curved carapace length (CCL). CCL can, for 
instance, be compared between populations for regional 
differences, and latitudinal trends can be evaluated 
across nesting populations (Tiwari and Bjorndal 2000). 
Growth rate and clutch size can be estimated using 
CCL size in marine turtles (Broderick et al. 2003) and 
CCL variations can provide clues about changes in the 
developmental habitats (Casale et al. 2018). Moreover, 
the minimum and maximum CCL values of nesting 
females during long-term field studies can be obtained 
and used to categorize strandings as potentially adult 
females or subadults depending on their CCL value. 
However, this information is scarcely available for green 
turtle rookeries in the Mediterranean region. Given 
the lack of morphological data on the Mediterranean 
green turtle, this study will fill knowledge gaps by 
determining: a) the carapace size of the nesting green 
turtle (i.e., CCL and CCW), b) variation in the body 
size and scute pattern of the green turtle over time, 
c) variation in CCL of the nesting green turtle across 
latitudes.

MATERIALS AND METHODS

Study field

Morphometric and meristic data were collected 
on Samandağ Beach (36°07'N, 35°55'E), located on 
the Eastern Mediterranean coast of Turkey, during 
2006–2016 nesting seasons (Fig. 1). Samandağ Beach is 
approximately 14 km in length and can be divided into 
three subsections: (1) Cevlik Beach, 5.5 km; (2) Şeyh-
Hızır Beach, 4 km and (3) Meydan Beach, 4.5 km. 
The Şeyh-Hızır and Çevlik segments have the highest 
nesting activity (Yalçın Özdilek 2007).

Measurements

Five people patrolled the beach at nights to 
observe female nesting turtles. Turtles were tagged 
and measured after they laid their eggs. Two types of 
tags (plastic and metal) were used. The plastic tags 
were used during the 2006–2009 nesting seasons (Tag 
code TR31SD-0). The metal tags were used during the 
2010–2016 nesting seasons (Tag code: TRY-9). The 
tags were placed on the trailing edge of the left fore 
flipper, as recommended by Balazs (1999). Moreover, 
it was checked whether the turtles were tagged or not 
from previous years. If the turtle was tagged from 
previous years, it was re-tagged on another fore flipper 
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to prevent pseudo replication. However, measurements 
of recaptured turtles were not included in the analysis. 
Similarly, straight carapace sizes were not included 
in the analysis due to use of different calipers among 
years. A flexible tape measure (accurate to the nearest 
mm) was used to obtain the curved measurements of 
the carapace. Measurements were taken as described 
by Bolten (1999). Measured characters were curved 
carapace length (CCL) and width (CCW). Meristic traits 
included carapace scute patterns such as vertebrals, left 
and right costals, left and right marginals (Özdemir and 
Türkozan 2006; Sönmez et al. 2011). 

To test the variation in the nesting green turtle’s 
CCL depending on the latitudinal gradient, published 

studies from assorted nesting beaches in different 
regions were used (see Table 1 for detailed information). 
However, some studies have given only straight 
carapace length (SCL) size, and therefore the equation 
CCL = (SCL + 0.0515)/0.9426 (Goshe et al. 2010) was 
used to convert SCL to CCL. The CCL size values in all 
published studies represent the average CCL value of 
nesting females.

Statistical analyses

The homogeneity of CCL and CCW size measure-
ments over the years was tested using the Box’s M 
test. Multivariate analysis of variance (MANOVA) 

N

Fig. 1.  Map of the study area (highlight shows survey area).
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was carried out to test the significance of differences in 
morphometric characters (CCL and CCW) among the 
years. The comparison of CCL values between nesting 
populations in the Mediterranean was performed 
with the Independent Samples T-Test, and also the 
comparison of CCL values of each nesting beach 
between each other was performed by One-Sample 
T-test. These tests were conducted with SPSS v. 17.0 
(SPSS Inc., Chicago, United States).

Tests for trend in the CCL and CCW values over 
the years were performed using the nonparametric 
and non-seasonal Mann-Kendall Trend test (Hipel and 
McLeod 1994). It was stated that this test can be used 
for all distributions (i.e., data do not have to meet the 
assumption of normality) and the data do not have 
to fit a linear trend (Gilbert 1987; Hipel and McLeod 
1994). It can even be used in data sets containing 
missing (or deficient) as long as there are at least 8 to 10 
measurements (Gilbert 1987; Hipel and McLeod 1994). 
The Mann-Kendall trend test has been used in the long-
term examination of marine turtles (da Silva et al. 2007; 
Marcovaldi et al. 2007; Sönmez 2018). In the trend 
analysis, the Theil-Sen regression and 95% confidence 
intervals were used to predict the regression constants 
based on the Kendall correlation coefficient (Sen 1968). 
Moreover, the Theil-Sen trend line was generated to 
visualize if there are any trends in the data. The null 
hypothesis in the Mann-Kendall test is that the data are 
independent and randomly ordered, that is, there is no 

trend. However, the presence of positive autocorrelation 
in the data increases the probability of detecting trends, 
when actually none exist or vice versa. The Durbin-
Watson statistic was used to test for the presence of 
autocorrelation in the residuals of a regression model 
in trend. The null hypothesis of the test is that there is 
no autocorrelation. The trend test was performed using 
XLSTAT 2018.4 software (Addinsoft, NY, United 
States).

The normality of CCL size regarding the latitude 
gradient was performed with a Kolmogorov-Smirnov 
test because of the low sample size. The relationship 
between CCL size and latitude gradient was tested with 
the Pearson correlation coefficient (Angielczyk et al. 
2015; Werner et al. 2016) using SPSS v. 17.0 (SPSS 
Inc., Chicago, United States).

Scute deviations were determined by observing 
each individual’s normal scute patterns. Depending on 
the presence or absence of scute deviations, the trait 
was classified as either 1 or 0, respectively. The number 
of each scute on carapace is considered a countable 
variable (Mast and Carr 1989) and therefore, countable 
data models such as Poisson and Negative Binomial 
are often used to analyse those data in marine turtles 
studies (Pradhan and Leung 2006; Gardner et al. 2008). 
In a standard Poisson model, the variance is assumed to 
be equal to the mean, but the real data often violate this 
assumption by having greater variances than the mean 
(i.e., over-dispersed). The Negative Binomial Model 

Table 1.  The CCL size data reported in the various published reports from assorted nesting beaches in different regions 
(*indicates conversion from CCL from SCL) (CCL: curved carapace length, SCL: straight carapace length)

Region Nesting Beach Latitude CCL n Range Reference

Southwest Pasific Heron Island, GBR, Australia -23° 107 1942 91-124 Limpus 2008
South Atlantic Trindade Island, Brazil -20° 115.2 3010 90-143.5 Almeida et al. 2011
Southwest Indian Mohéli, Comoros Islands -12° 108.1 742 90-129 Innocenzi et al. 2010
Southwest Pasific Raine Island (Australia) -11° 105.9 20947 86-130.1 Limpus et al. 2013
Southwest Indian Aldabra, Seychelles Islands -9° 109.6* 54 95-114 Frazier 1971
South Atlantic Ascension Island (UK) -7° 116.8 738 101.6-131.5 Hirth 1997
South Atlantic Atol das Rocas, Brazil -3° 114.5 1850 96-132 Bellini et al. 2013
South Atlantic Galibi Reserve (Suriname) 5° 116* 291 97-125 Schulz 1975
East Indian Turtles Island (Philippines) 6° 99.5 ? ? Trono 1991
North Indian Kosgoda (Sri Lanka) 6° 105 418 85.9-120.2 Ekanayake et al. 2016
North Atlantic Tortuguero (Casta Rica) 10° 106.6* 2017 ? Bjorndal and Carr 1989
South Atlantic Aves Island (Venezuella) 15° 112.4 450 ? Vera 2008
North Indian Ras al Hadd (Omman) 22° 102.7 36 89-116 Mendonça et al. 2010
North Pasific Orchid Island (Taiwan) 22° 103.9 66 93-116 Cheng et al. 2009
North Indian Ras Baridi (Saudi Arabia) 24° 105.2 15 92-114 Hirth 1997
North Atlantic Cape Canaveral, Florida (USA) 28° 108* 90 83.2-116.7 Witherington and Ehrhart 1989
Mediterranean Alagadi (Cyprus) 35° 91.5 92 77 -106 Broderick et al. 2003
Mediterranean Kazanlı (Turkey) 36° 89.5 43 76 – 104 Elmaz and Kalay 2006
Mediterranean Akyatan (Turkey) 36° 91.9 39 82.5-102.5 Türkecan 2010
Mediterranean Samandağ (Turkey) 36° 86.9 365 72-106 This study

page 4 of 13Zoological Studies 58: 16 (2019)



© 2019 Academia Sinica, Taiwan

allows for variance that differs from the mean, and it is 
often used to model countable data when the data are 
over-dispersed (Hilbe 2007). Scute patterns were over-
dispersed and better described by the Negative Binomial 
Model. Therefore, the Negative Binomial Model (with 
the function log link) was used to test whether there 
is a regression in meristic characters throughout the 
years. For each carapace scute models, a fixed value 
was selected for the scale parameter method, and the 
Fisher method was used for the parameter estimation. 
Moreover, the likelihood ratio chi-square test was used 
to detect a model effect. This test allows for selecting 
the best explanatory model by retaining explanatory 
variables that significantly improved the model fit. 
The difference in the scute deviation of frequency 
distribution was analysed with the chi-square Fisher’s 
exact test because the expected count was less than 5. 
These analyses were conducted using SPSS v. 17.0. 
(SPSS Inc., Chicago, United States). All means are 
presented with ± SD and min-max.

RESULTS

Morphometrics

In total, 365 green turtles were measured for CCL 
and CCW, and the resulting descriptive statistics are 
shown in table 2. The mean CCL and CCW were 86.9 
± 6.14 cm (range = 72–106) and 77.9 ± 5.95 cm (range 
= 63–95), respectively. The smallest nesting female size 
was 72 cm.

Twelve samples in total were excluded from all 
statistical analyses due to low sample sizes in 2008, 
2013, and 2015. Multivariate statistic (MANOVA) 
identified overall significant differences in variables and 
confirmed that the CCL and CCW showed variations 
over the years (Wilks’s Lambda = 0.825, F = 4.953, 
d.f.1 = 14, d.f.2 = 688, p = 0.001). The Durbin Watson 
test showed no autocorrelation for CCL and CCW in 
residuals (P > 0.05). The mean CCL and CCW values 
tended to become smaller over the years, but this trend 
was not significant for both measured traits (P > 0.05) 
(Fig. 2).

CCL values were negatively correlated with 
the latitudinal gradient (r = -0.760, p = 0.001, n = 
20, two-tailed) (Fig. 3). The size of nesting marine 
turtles is larger on average at low latitudes. Moreover, 
the minimum CCL value of nesting female was also 
negatively correlated with the latitudinal gradient (r 
= -0.804, p = 0.001, n = 17, two-tailed). When the 
latitudinal gradient was divided into the Southern 
hemisphere and Northern hemisphere, CCL size was 
not correlated with latitude in Southern hemisphere 

(r = 0.374, p = 0.409, n = 7, two-tailed), whereas it was 
negatively correlated in the Northern hemisphere (r = 
-0.753, p = 0.003, n = 13, two-tailed).

Meristics

In total, 292 green turtles were examined for 
carapacial scute patterns. The most common carapace 
scute patterns were 5 vertebral scutes (95.5%), 4 right 
and left costal scutes (95.5% and 94.8%, respectively), 
and 11 right and left marginal scutes (93.8% and 96.2%, 
respectively). The carapace scute deviation rates over 
the years are shown in table 3. Carapacial scute patterns 
were not examined in 2014. Also, the scute patterns in 
2008, 2009, 2013 and 2015 (in total 12 samples) were 
not included in the analysis due to their low sample 
size. The negative binomial regression model was used 
because of over-dispersion in all scute patterns, and 
no relationship was found between year and carapace 
scute deviation (Table 4). Although the right part of the 
carapace (right costal and marginal) indicated very weak 
negative relationships, the left part and center of the 
carapace indicated very weak positive relationships with 
years. However, each model for each scute deviation 
explained only a very small part of this relationship 
(Table 4).

When the frequency distribution difference of 
scute deviations was compared over the years, there 
were statistically significant differences in left marginal 
(Fisher’s Exact = 29.172, p = 0.0001) and right marginal 
scutes (Fisher’s Exact = 52.673, p = 0.0001). However, 
there were no significant differences in vertebral 
(Fisher’s Exact = 15.297, p = 0.129), left costal (Fisher’s 
Exact = 12.966, p = 0.090), and right costal (Fisher’s 
Exact = 12.934, p = 0.105) over the years.

DISCUSSION

The mean CCL and CCW values over 11 years on 
Samandağ Beach were 86.9 and 77.9 cm, respectively 
while the minimum CCL of nesting green turtles was 
72 cm. Many previous studies recorded higher mean 
and minimum CCL values in different regions than that 
of the Samandağ nesting population (see Table 1 for 
details). The mean CCL value of nesting green turtles in 
different nesting beaches ranges between 89.5 (Kazanlı, 
Mediterranean) and 116.8 cm (Ascension Island, South 
Atlantic). The mean CCL value of the nesting green 
turtle population on Samandağ Beach has the smallest 
reported mean CCL so far for any population (see Table 
1). 

In previous studies, it was reported that the 
Mediterranean green turtle population was smaller than 
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Fig. 2.  The temporal change in the CCL (curved carapace length) and CCW (curved carapace width) values over the years (Black lines are Theil-Sen 
trend lines).

Table 2.  The descriptive statistics of the morphometrics characters over years (CCL: curved carapace lenght, CCW: 
curved carapace width) (*indicates the years that were eliminated from the statistical analysis owing to the small 
sample sizes)

Years CCL (cm) CCW (cm)

N Mean ± SD Min-Max Mean ± SD Min-Max

2006 38 89.39 5.8 77-105 79.38 6.46 66-95
2007 11 89.09 7.49 77-102 80.18 7.98 65-95
2008* 2 83.50 2.12 82-85 77.50 2.12 76-79
2009 7 88.0 5.44 82-97 76.71 4.64 72-86
2010 43 90.51 6.25 79-106 81.93 5.77 64-91
2011 134 84.44 5.35 72-102 75.61 5.37 64-94
2012 26 88.42 5.77 79-99 79.76 5.64 70-90
2013* 5 86.60 5.12 81-93 76.20 4.65 71-82
2014 65 86.06 5.82 73-102 77.35 5.38 63-92
2015* 5 88.0 1.41 86-90 77.80 1.30 76-79
2016 29 89.44 6.47 77-104 80.0 5.35 71-92

Total 365 86.92 6.14 72-106 77.91 5.95 63-95
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Table 3.  The descriptive statistics of the carapacial scute deviations within years (0 = no scute deviations; 1 = scute 
deviations) (*indicate the years that were eliminated from the statistical analysis owing to the small sample sizes)

Scute Pattern Deviation %/n 2006 2007 2008* 2009* 2010 2011 2012 2013* 2015* 2016 Total

Marginal (left) 0 (%) 94.8 91 100 100 100 100 100 40 100 82.2 96.2
n 36 10 1 2 43 134 26 2 4 23 281

1 (%) 5.2 9 0 0 0 0 0 60 0 17.8 3.8
n 2 1 0 0 0 0 0 3 0 5 11

Marginal (right) 0 (%) 94.8 91 100 100 100 100 100 60 100 57.2 93.8
n 36 10 1 2 43 134 26 2 4 16 274

1 (%) 5.2 9 0 0 0 0 0 40 0 42.8 6.2
n 2 1 0 0 0 0 0 3 0 12 18

Vertebral 0 (%) 97.4 91 100 100 100 97.7 84.6 100 100 85.7 95.5
n 37 10 1 2 43 131 22 5 4 24 279

1 (%) 2.6 9 0 0 0 2.3 15.4 0 0 14.3 4.5
n 1 1 0 0 0 3 4 0 0 4 13

Costal (left) 0 (%) 94.8 100 100 100 97.7 95.5 92.3 100 100 85.7 94.8
n 36 11 1 2 42 128 24 5 4 24 277

1 (%) 5.2 0 0 0 2.3 4.5 7.7 0 0 14.3 5.2
n 2 0 0 0 1 6 2 0 0 4 15

Costal (right) 0 (%) 94.8 100 100 100 100 97.7 96.2 100 75 78.6 95.5
n 36 11 1 2 43 131 25 5 3 22 279

1 (%) 5.2 0 0 0 0 2.3 3.8 0 25 21.4 4.5
n 2 0 0 0 0 3 1 0 1 6 13

Fig. 3.  The relationship between nesting CCL (curved carapace lenght) size and latitude in marine turtles across different regions.

page 7 of 13Zoological Studies 58: 16 (2019)



© 2019 Academia Sinica, Taiwan

other populations (i.e., Atlantic and Pacific) (Erhart 
1982). These differences may be due to a recent genetic 
separation between populations and/or different growth 
rates of these populations. It was stated that the Atlantic 
green turtles colonized the Mediterranean Sea after 
the last glacial period based on non-Bayesian methods 
(Naro-Maciel et al. 2014). The same result was obtained 
by several authors using different methods (e.g., Bowen 
et al. 1992; Enclada et al. 1996; Bağda et al. 2012). 
Therefore, many rookeries can now be considered 
as individual management units (Naro Maciel et al. 
2014) and separated as source populations (Carreras et 
al. 2014). Along with genetic factors, environmental 
conditions of the Mediterranean might affect body size. 
Tiwari and Bjorndal (2000) claimed that environmental 
conditions and geological history of the Mediterranean 
Sea can explain why the Mediterranean population of 
loggerhead turtles (Caretta caretta) is smaller than the 
Atlantic population. The Atlantic system has a richer 
nutrients level than the Mediterranean system (Tiwari 
and Bjorndal 2000). The isolating barriers as a result 
of the tectonic events and land mass movements have 
contributed to oligotrophic conditions, particularly in 
the eastern basin where adult green turtles reside (Sara 
1985). It was stated that low levels of nutrients could 
have important effects on marine turtle populations 
(Tiwari and Bjorndal 2000). Therefore, resource 
availability could have effects on the growth rate, 
and hence the size of the turtles (Bjorndal 1985). 
Mediterranean turtles can respond to the constraints 
of limited resources by maturing early, directing 
the energy needed for growth to reproduction and 
maximizing the conversion efficiency of the resources 
(Tiwari and Bjorndal 2000). There are many differences 
in size among different regions based on the nutrient 
contents or environmental conditions of those regions. 
The growth rate of the marine turtle is related to the 
carapace size (i.e., SCL or CCL), and the green turtles 
can have different growth rates in different regions (i.e., 
in the Atlantic and the Pacific Oceans) (Limpus and 
Chaloupka 1997; Bjorndal et al. 2000; Omeyer et al. 
2018). 

The mean CCL value of nesting green turtles 
on Samandağ Beach is also smaller than those of 
Mediterranean populations, but this difference is not 
statistically significant (T-test, p > 0.05, see Table 1). 
When the mean CCL value of the Samandağ nesting 
population was compared to the mean CCL value of 
each nesting populations of Mediterranean, significant 
differences were detected (One Sample T-test, t = 
37.208, p = 0.017 for Alagadi, t = 95.316, p = 0.007 
for Kazanlı, t = 72.680, p = 0.009 for Akyatan). Why is 
the Samandağ population smaller than the others even 
though they share a common ancestor? This difference 
in CCL could be possibly due to local environmental 
conditions rather than genetic factors. Chaloupka et al. 
(2004) stated that the rate of growth among green turtle 
populations with the same mtDNA haplotype may vary 
depending on environmental conditions such as food 
availability and nutrient uptake rates. Also, it should 
be not forgotten that the Mediterranean green turtle 
populations showed a low level of mtDNA variation 
(Bağda et al. 2012). It is known that marine turtles 
use different habitat types during their life history, 
and nutrient richness in these different habitats also 
effect the growth of marine turtles (Bjorndal 1985). 
Food stock dynamics subject to local environmental 
stochasticity, which may lead to differences in food 
availability and nutrient uptake rates, may lead to 
differences in CCL size of green turtles (Chaloupka et 
al. 2004). The trophic status and growth rate of green 
turtles in the Mediterranean should be investigated 
for better conservation management in the future. 
Moreover, shorter migrations due to a lower growth rate 
with a similar age at maturity can cause smaller size in 
turtles (Casale et al. 2011). Based on the stranded green 
turtle data, Yalçın Özdilek and Aureggi (2006) and 
Sönmez (2018) noted that the Samandağ coastal area is 
a possible feeding ground for green turtles, indicating 
that this population may have a short migration route. 
Does the fact that the Samandağ population has a 
smaller CCL size than the other female green turtle 
populations both in and out the Mediterranean have any 
disadvantages? It may have a negative impact on clutch 

Table 4.  The test results of carapacial scute deviation using negative binomial regression with log link

Negative Binomial Regression with log link 95% Confidence Interval for Exp (B)

Variable Likelihood Ratio Chi-Square d.f. p Slope Exp (B) Lower Upper

Marginal (left) 0.013 1 0.910 0.0001 0.999 0.984 1.015
Marginal (right) 0.094 1 0.759 -0.0002 0.998 0.987 1.010
Vertebral 0.019 1 0.892 0.0001 0.999 0.985 1.013
Costal (left) 0.012 1 0.914 0.0001 0.999 0.985 1.013
Costal (right) 0.029 1 0.865 -0.0001 0.999 0.986 1.012
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size, i.e., the number of hatchlings, because the smaller 
size (i.e., smaller CCL) of the green turtle produces 
smaller clutch sizes in the Mediterranean populations 
(Broderick et al. 2003). Moreover, it can have a 
negative impact on genetic diversity and population 
size in future populations. Large female marine turtle 
size could be effective in mating with more than one 
male (this phenomenon is called “multiple paternity”), 
and smaller female turtle could tend to mate with fewer 
males (Zbinden et al. 2007; Sarı et al. 2017). It was 
stated that the high frequency of multiple paternity (or 
polyandry) implies a possible high genetic diversity and 
population size within a population, i.e. indirect genetic 
benefits (Zbinden et al. 2007; Alfaro-Nunez et al. 2015; 
Sarı et al. 2017). Although multiple paternity has been 
documented in the green turtle (Lee and Hays 2004; 
Wright et al. 2013; Alfaro-Nunez et al. 2015), there is no 
relationship between multiple mating and body size (Lee 
and Hays 2004; Wright et al. 2013). However; Wright 
et al. (2013) reported that polyandry was significantly 
more common in re-migrant females compared with 
first-time nesters (potential new recruits), even if 
recruits females are smaller than re-migrants. When 
considering that one of the reasons for the downward 
tendency in body size in the Samandağ population could 
be a recruitment of new females (discussed below), 
this situation may provide a disadvantage to future 
populations in terms of genetic diversity or indirect 
genetic benefits.

The morphometric characters (CCL and CCW) 
of turtles on the Samandağ nesting beach showed 
significant differences among the years. Similarly, it 
was reported that there was a significant difference in 
nesting size of green turtles over the years on Raine 
Island, Australia (Limpus et al. 2003). The same result 
was reported by Bellini et al. (2013) for the Atol das 
Rocas, Brazil. In contrast, Limpus et al. (1984) found 
no significant differences between seasonal variations 
on nesting size of the green turtle over 8 years on Heron 
Island, Australia. The differences in CCL value over 
time may be due to the change in selective forces caused 
by changes in density-related maturation mechanisms 
or mortality patterns (Bellini et al. 2013). There may 
be different mortality rates among subgroups of adult 
turtles living in different feeding areas because they may 
be exposed to different death risks in different areas 
(Hatese et al. 2002). It was reported that the mean CCL 
size of the stranded green turtles, which was recorded 
on the nesting beaches near Samandağ Beach, ranged 
between 33 and 86 cm (Türkozan et al. 2013). Sönmez 
(2018) stated that CCL size of the stranded green turtles 
showed increases on Samandağ Beach over the 2002-
2017 nesting seasons. This situation may be caused by 
CCL value inter-seasonal differences over the years.

The CCL and CCW values tended to decrease 
from 2006 to 2016 in the present study, but this trend 
was not significant. Perhaps the reason for the lack of 
a significant difference in the trend may be that the 
trend begins towards the end of the study period. It was 
stated that the CCL value of stranded green turtles at 
Samandağ Beach increased significantly after the 2012 
nesting season (Sönmez 2018). The separation of larger 
turtles from the population by the stranding suggests that 
the smaller turtles are nesting. Significant downward 
trends in the mean CCL value of nesting green turtle 
females on Raine Island over 26 nesting seasons were 
reported by Limpus et al. (2003). Similarly, the mean 
CCL values of the green turtles nesting on the Atol 
das Rocas (Rocas Atoll) significantly decreased during 
the 1990–2008 nesting seasons (Bellini et al. 2013). A 
similar result was also found for the olive ridley turtle 
(Lepidochelys olivacea) in the States of Sergipe and 
Bahia, North-Eastern Brazil (da Silva et al. 2007). The 
causes of the downward trend in CCL and CCW values 
can be explained in three different ways. Firstly, this 
downward trend could be seen as an indication that, in 
addition to the present nesting population, new females 
were also recruited. Probably younger and smaller 
female turtles participated, as in the case of the Atol das 
Rocas nesting beach for the green turtle (Bellini et al. 
2013) and North-Eastern Brazil for the olive ridley turtle 
(da Silva et al. 2007). Moreover, it was reported that the 
mean CCL size of the nesting green turtle in Cyprus is 
decreasing over time due to recruitment of neophytes 
(Stokes et al. 2014). Secondly, the decrease in CCL may 
be related to a mortality rate of nesting adults because 
the mortality rate of adults can explain the CCL decrease 
(da Silva et al. 2007). However; Türkozan et al. (2013) 
showed that the stranding green turtles are mainly sub-
adults on Samandağ Beach. Sönmez (2018) also stated 
that the CCL value of the stranded green turtles after 
2012 nesting season has increased on Samandağ Beach. 
Thirdly, the downward trend could be a result of nesting 
shifts among the nesting beaches. Yılmaz et al. (2015), 
suggested that a nesting shift may exist among Akyatan, 
Kazanlı and Samandağ Beaches, which are important 
nesting beaches for green turtles in the Mediterranean. 
It has been reported that two green turtles nested in four 
different nesting beaches during the same nesting season 
based on tagging (Sönmez et al. 2017). Similarly, 73% 
of the loggerhead turtles in the Northern Recovery Unit, 
USA laid egg at more than one nest within a distance 
of 20 km based on microsatellite genotypes, whereas 
54% nested elsewhere based on tagging (Shamblin et 
al. 2017). The value of CCL may be affected as a result 
of the exchange of nesting females among the beaches 
in the Mediterranean region. However, the loggerhead 
turtles are a different species, known to have low nest 
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site fidelity, and the green turtles in the Mediterranean 
are thought to have very high nest site fidelity (Broderick 
et al. 2002 2007; Snape et al. 2018).

The CCL value of nesting green turtles showed 
a negative correlation with latitude. This result 
rejected Bergmann’s rule which suggests a positive 
relationship between latitude and body size (Gardner 
et al. 2011). Tiwari and Bjorndal (2000) also found a 
negative relationship between body size and latitude 
in loggerhead turtle nesting populations (Brazil, 
Florida, and Greece). The effectiveness of Bergmann’s 
rule has been discussed for all reptile groups, such as 
the chelonians (Lindsey 1966; Ashton and Feldman 
2003; Angielczyk et al. 2015). Ashton and Feldman 
(2003) found that data from some chelonians support 
Bergmann’s rule, whereas data from others reject 
it. Furthermore, Werner et al. (2016) found that the 
carapace length of Testudo graeca was correlated 
with latitudes, both globally and locally, following 
Bergmann’s rule. Angielczyk et al. (2015) also indicated 
that the body sizes (CCL) of 336 species except marine 
and island turtles were not consistent with Bergmann’s 
rule. Concordantly, they found a significant negative 
correlation between the latitude and body size. As a 
result of warmer and more consistent temperatures 
at lower latitudes, reptiles can grow throughout the 
year and become larger. On the other hand, at higher 
latitudes, the climates are less stable and fluctuate 
daily and seasonally, which may lead to less growth 
throughout the year and therefore smaller individuals 
(Lindsey 1966; Ashton and Feldman 2003; Angielczyk 
et al. 2015). As marine turtles occupy temperate and 
tropical climates, Lindsey (1966) did not assess the 
body size across latitudes. Similarly, Angielczyk et al. 
(2015) did not include marine turtles in their analysis 
to represent a phylogenetically distinct group and 
variations between ocean basins. As marine turtles 
migrate between feeding and breeding grounds, 
spending the majority of their lives at the former, it may 
be more appropriate to test the latitude variation across 
feeding areas instead of nesting beaches.

Scute deviation in marine turtles is a common 
morphological variation (Mast and Carr 1989; 
Suganuma et al. 1994; Özdemir and Türkozan 2006; 
Ergene et al. 2011; Sönmez et al. 2011). The observed 
scute deviation was not as high in adults as in hatchlings 
(Suganuma et al. 1994; Türkozan et al. 2001), because 
the hatchlings with deviant scute likely die before they 
reach the adult stage (Özdemir and Türkozan 2006; 
Sönmez et al. 2011). Sönmez (2018) reported that 
stranded oceanic and sub-adult green turtles showed 
higher carapace scute deviation rates than their adults. 
The size of the deviation in adult green turtle on 
Samandağ Beach was larger than the Alata nesting 

populations in Turkey (Ergene et al. 2011). For 13 adult 
green turtles on the Alata nesting beach, the frequency 
of scute deviation was shown as 7.7% for vertebral and 
15.2% for left costal; and both marginal scutes and right 
costal did not show any deviations (Ergene et al. 2011). 
Scute deviations can be related to DNA methylation 
levels during embryonic development, which is an 
epigenetic mechanism (Caracappa et al. 2016). DNA 
methylation levels correlate with environmental 
conditions (Varriale 2014), because environmental 
parameters can affect the DNA methylation and, 
consequently, the activation or suppression of certain 
genes (Caracappa et al. 2016). Scute deviations may 
be due to genetic and maternal characteristics (Glen 
et al. 2003) as well as environmental factors including 
temperature during incubation (Kamezaki 1989). 
Moreover, scute deviations may be caused by high 
temperatures during incubation (Kobayashi et al. 2017) 
or by the relocation of nests (the transfer of eggs to a 
safer area). For example, scute deviations in the green 
turtle hatchlings in relocated nests were higher than in 
situ nests in Japan (Suganuma et al. 1994). A similar 
result was also observed for the green turtle hatchlings 
on Samandağ Beach (Sönmez et al. 2011).

CONCLUSIONS

In conclusion, the mean CCL of the nesting green 
turtle population on Samandağ Beach is the smallest 
recorded in the Mediterranean (see Table 1 for further 
information), and the smallest size of nesting females 
is 72 cm. Both morphometric (i.e., CCL and CCW) and 
meristic characters showed differences across the years, 
except for both costal and vertebral scutes. Samandağ’s 
green turtle population showed a decreasing temporal 
trend in body size. CCL of nesting green turtle showed 
a negative correlation with the latitudinal gradient, 
rejecting Bergmann’s rule. Along with the information 
provided by this present study, further research on the 
diversity of nutrition in feeding areas, growth rates, 
and understanding of how the growth rate and food 
availability are affected by ongoing global climate 
change will contribute to the conservation biology of 
Mediterranean green turtle populations.
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