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Sex identification of individuals is an important task in wildlife forensics as well as in conservation biology. 
It helps scientists understand population sex ratios with respect to maintaining genetic diversity, managing 
inbreeding depression and preventing the demographic consequences of sex-biased poaching. The 
literature on the use of mammalian molecular sex markers indicates that the success of accurate sex 
identification is variable across species. Very little is known about the effectiveness of such markers on the 
mammals of South and Southeast Asia. Therefore, we selected and tested three sets of universal primers 
for low-cost gel-based sex identification of mammals. We amplified different sets of markers—SRY (157 
bp) and 12S rRNA (384 bp); Y-53-SRY (225 bp) and ZFX/ZFY (P1/P2; 445); SRY (157 bp) and 12S rRNA 
(151 bp)—to be used with different types (tissue, hair and skin) of samples from 20 mammalian species. 
All three sets of primers amplified the sex-specific fragment in a range of samples from hair to tissue. With 
an increasing number of field studies using non-invasively collected samples, this proposed low-cost gel-
based method of molecular sexing may be applied in various aspects of the ecology and biology of South 
and Southeast Asian mammals, their conservation and forensics. We suggest that at least two sets of 
primers be used for any biological samples to avoid ambiguity.
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BACKGROUND

Identification of the sex of mammals from a 
population facilitates behavioural, breeding system and 
evolutionary ecology studies of different species (Rosel 
2003). Sex identification is also crucial for understanding 
the effects of sex-selective harvesting in sports and in 
dealing with the illegal trade of wildlife species of high 
conservation priority (Spong et al. 2000; Milner et al. 
2007; Mondol et al. 2014), as a skewed population sex 
ratio may affect the mating system and biology of a 
species (Mysterud et al. 2002). Samples collected from 
the field provide information regarding the population 
dynamics and demographic structure of a species as 
well as sex-biased habitat use by the species (Brown 

et al. 1991; Gompper et al.1998; Hughes 1998; Eggert 
et al. 2003). Therefore, many markers and techniques 
have been proposed to identify the sex of an individual. 
These include cytogenetic analysis, detection of H-Y 
antigen and measurement of X-linked enzymes before 
Barr body formation (Bondioli 1992). PCR-based sex 
identification can be performed using random fragment 
length polymorphisms (RFLP) (Aasen and Medrano 
1990; Palsboll et al. 1992), TaqMan Probe-based real-
time PCR (Chou et al. 2010), fluorescent labelled sex-
specific primers (Settin et al. 2008; Mukesh et al. 
2013), and hybridization and ligation (Zoledziewska 
and Dobosz 2003). The random amplified polymorphic 
DNA (RAPD) technique has also been used for gender 
determination, but this technique has not been found 
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to be reliable for sexing mammalian species because it 
is time consuming and there is a chance that the sex-
specific band disappears during the reaction (Smith et 
al. 1994). 

PCR has been used for sex determination by 
targeting sex-specific regions in the genome such 
as the sex-determining Y chromosome (SRY) gene 
(Pomp et al. 1995; McHale et al. 2008; Han et al. 
2010), amelogenin (Sullivan et al. 1993) and the zinc 
finger protein encoding Zfx and Zfy genes (Aasen and 
Medrano 1990). Among these, SRY has been used for 
many mammalian species (Pomp et al. 1995; Garcia-
Meunier et al. 2001; Mukesh et al. 2013). Successful 
amplification of the Y-specific region indicates male 
identity. However, in poor-quality samples (hair, 
degraded tissues, museum specimens and fecal samples) 
and even sometimes in samples of good quality, 
PCR may fail to amplify DNA due to the presence 
of an inhibitor or the amount of DNA and not due to 
the animal being female (Ortega et al. 2004). Some 
proposed solutions to this include co-amplification of 
mitochondrial DNA or a single copy of a nuclear gene 
in duplex PCR along with a sex-specific fragment in 
a single reaction (Kamimura et al. 1997; Ortega et al. 
2004). A homologous gene, such as amelogenin, present 
in both X and Y chromosomes in mammalian species 
producing different-sized amplicons in males and 
females have also been used in sex identification. But 
the usability of this gene for sexing in some species of 
mustelid has not been confirmed (Hattori et al. 2003). 
However, Y-specific genes have also failed to amplify in 
some rodent species (Bryja and Konečný 2003). On the 
other hand, zinc finger proteins can be amplified using 
a single set of primers that are specific for identifying 
the sex of mammalian species (Palsboll et al. 1992; 
Aasen and Medrano 1990; Ortega et al. 2004; Xu et al. 
2009). Most of the sex identification methods have been 
explored in the felids and other carnivores and only 
a few have been tested on other mammals (Wei et al. 
2008; Mukesh et al. 2013; DeCandia et al. 2016). 

In view of the mixed findings regarding molecular 
sexing in the literature, we explored the use of PCR-
based sex identification of mammals using the Y-specific 
gene. Most of these species are threatened by several 
factors such as illegal hunting, habitat destruction and 
climate change (Woodroffe 2000; Check 2006; Corlett 
2007; Shepherd 2008). These threats affect their size and 
alter their population structures (Ginsberg and Milner-
Gulland 1994). Our main focus in this study was to 
test and optimize the use of published universal primer 
sets for sex identification and suggest the applicability 
of these primer sets in identifying the sex of mammals 
distributed in South and Southeast Asian countries. 
Many biological samples obtained during field surveys, 

including surveys of elusive species, as well as wildlife 
forensics samples, are of poor quality and yield low-
quality DNA (Taberlet et al. 1999; Teletchea et al. 
2005; Pages et al. 2009), making the amplification of 
large fragments unreliable. Therefore, targeting smaller 
amplicon sizes in the sample types mostly encountered 
in the wildlife forensics—e.g. non-invasively collected 
or preserved in the formalin (Teletchea et al. 2005; 
Brinkman and Hundertmark 2009; Joshi et al. 2013)—
increases the chance of amplification success from 
templates with low copy numbers. Therefore, we tested 
the applicability of a gradient of small to large (151–445 
bp) amplicons using both degraded and good-quality 
samples from different mammals found in South and 
Southeast Asia.

MATERIALS AND METHODS

Selection of sex primers

We identified some robust primers based on 
their success in sexing and species identification as 
described in the literature. We selected universal primer 
sets of three markers 151–445 bp long (Table 1). 
Two mitochondrial primers (12S rRNAs) of different 
sizes and one ZFX-ZFY homologous sex marker (P1/
P2) (Aasen and Medrano 1990) were used as internal 
markers to avoid the non-amplification of sex primers 
due to the presence of PCR inhibitors or low quality 
DNA, as recommended in the literature (Ortega et al. 
2004).

The primers were selected based on the fact that 
most samples recovered from the wildlife trade (such as 
processed meat, bones, claws, tanned skins, carrion, hair, 
horn and ivory) are of poor quality (Jackson 1990; Mills 
1993; Wasser et al. 2008; Milliken and Shaw 2012; 
TRAFFIC 2011). Such samples are difficult to amplify 
due to their prolonged exposure to ambient conditions, 
resulting in degradation of DNA through autolysis and 
bacterial action (Lindahl and Andersson 1972). Thus, 
only gene fragments of < 500 bp from these samples 
should be used to identify sex and species (Goyal et al. 
unpublished data). Therefore, we selected small primers 
with one internal marker (< 450 bp), which is within 
the range of most forensic and biological samples 
collected from field surveys or museum samples. Sex 
was identified based on the amplification of Y-linked 
sex-specific bands co-amplified with internal primers 
(12S rRNA and P1/P2), as suggested in the literature, 
to avoid ‘false positives’ for female samples (Ortega 
et al. 2004). This technique was used for both male 
and female animals, as two bands appeared in samples 
from male animals, one band being that of a Y-linked 
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sex-specific primer and the second one being that of an 
internal primer. In samples from female animals, only 
the internal primer was amplified.

DNA extraction and quality assessment

We selected samples from 20 Indian mammal 
species that are also distributed in other parts of South 
and Southeast Asia and often reported to be affected 
by trade and habitat fragmentation. Species that we 
tested for sex identification are distributed in South 
and Southeast Asia and selected samples included 
tissues, hair and tanned skins (Table 2). The study was 
conducted from 2011–2013.

DNA was extracted from the tissue samples using 
the Qiagen Tissue Kit according to the manufacturer’s 
protocol. We made some modifications to the protocol 
to extract DNA from the tanned skins. In the cases of 
tanned skins, Proteinase K (20 μl/ml) was added at 8–12 
hour intervals and the samples were incubated for a 
long period (2 days) to increase the yield of DNA in the 
final extract. After the skins were digested completely, 
DNA was extracted according to the manufacturer’s 
protocol. DNA was extracted from the hair samples 
by chopping the hair into small pieces and placing the 
pieces into sterilized 1.5 mL Eppendorf tubes. Lysis 
buffer (Tris-Cl (10 mM), EDTA (10 mM), NaCl (100 
mM)), 2% sodium dodecyl sulphate (SDS), 10 µl of 
Proteinase K and 10 µl of dithiothreitol (DTT, 10 mM) 
were added. The samples were incubated at 56°C in 
a water bath for 8 hours. Additional Proteinase K and 
DTT (10 µl each) were added during the incubation 
phase to digest the hair faster. After 8 hours, the samples 
were removed from the water bath and centrifuged at 
8000g for 1 minute. The subsequent steps were carried 
out using the Qiagen Tissue Kit according to the 
manufacturer’s protocol. The quality of the DNA was 

tested on 0.8% gel and quantified using a 1 kb ladder 
(HiMedia). All the DNA samples were verified using gel 
electrophoresis and categorized as ‘good’, ‘moderate’, 
or ‘low’ quality or ‘no visible DNA’ (Fig. 1). Good-
quality DNA was diluted 1:100 with elution buffer to 
reduce the concentration. Moderate-quality DNA was 
diluted 1:50, and low-quality DNA was diluted 1:20. 
Samples with no visible DNA were used directly (1 µl) 
to obtain a clear band. These were undertaken because 
failure to amplify the targeted genes may also be due 
to a high concentration of DNA or the presence of an 
inhibitor (Bryja and Koncny 2003).

PCR amplification of sex primers

Sex identification of 20 mammalian species was 
performed using three sets of sex primers with one 
internal primer (Table 2). One known male positive 
sample and one female positive sample were used as 
controls during the PCR amplification of these sets of 
primer. The amplification of sex primers was performed 
with 2.5 mM MgCl2, 0.2 μM SRY primers, 0.3 μM12S 

Table 1.  List of primer sets used in this study

Set Primer Size (bp) Primer Primer sequence Reference

I 12S rRNA 384 L1091 5ʹ-AAA AAG CTT CAA ACT GGG ATT AGA TAC CCC ACT AT-3 Kocher et al. 1989
H1478 5ʹ-TGA CTG CAG AGG GTG ACG GGC GGT GTG T-3ʹ

SRY 157 SRYA-5 5ʹ-TGAACGCAGTCATGGTGTGGT-3ʹ Pomp et al. 1995
SRYA-3 5ʹ-AATCTCTGTGCCTCCTGGAA-3ʹ

II ZFX/ZFY 445 P15EZ 5ʹ-ATAATCACATGGAGAGCCACAAGCT-3ʹ Aasen and Medrano 1990
P13EZ 5ʹ-GCACTTCTTTGGTATCTGAGAAAGT-3ʹ

SRY 225 Y53-3C 5ʹ-CCCATGAACGCATTCATTGTGTGG-3ʹ Fain and LeMay 1995
Y-53-3D 5ʹ-ATTTTAGCCTTCCGACGAGGTCGATA-3ʹ

III 12S rRNA 151 12Sa 5ʹ-CTG GGG ATT AGA TAC CCC ACTA-3ʹ Rohland et al. 2004
12So 5ʹ-GTC GAT TAT AGG ACA GGT TCC TCT A-3

SRY 225 Y53-3C 5ʹ-CCCATGAACGCATTCATTGTGTGG-3ʹ Fain and LeMay 1995
Y-53-3D 5ʹ-ATTTTAGCCTTCCGACGAGGTCGATA-3ʹ

Fig. 1.  Quality of DNA extracted on 0.8% agarose gel. M, 100 bp 
leader; 1, good quality; 2, moderate quality; 3, low quality; 4, no 
visible DNA.
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Table 2.  PCR amplification with different sets of primers (+) and reported distribution of mammalian species in South 
and Southeast Asian countries

SN Species Common name N Set I Set II Set III Southeast Asian countries

BR CA ET IN LA MA MY PH SI TH VI 

Wild species1

1 Panthera tigris Tiger 3# + + +(2)   *   *   *  
2 Panthera pardus Leopard 7† + +(51) +(2) *  *  * *  * * *
3 Prionailurus bengalensis Leopard cat 2‡ + + + * *  *  * * * * * *
4 Lutra sp. Otter 4† + + (89) +(3) *  *   *   * *
5 Antilope cervicapra Blackbuck 2‡ + + +           
6 Boselaphus tragocamelus Nilgai 2‡ + + +(4)           
7 Bos gaurus Gaur 2‡ + + + *    * *   * *
8 Muntiacus muntjak Barking deer 2‡ + + + *   *  *   * *  
9 Capricornis thar Serow 2† + + +           
10 Naemorhedus goral Goral 2‡ + (14) + (31) +           
11 Hemitragus jemlahicus Himalayan tahr 2‡ + + +           
12 Gazella bennettii Chinkara 2‡ + + +           
13 Axis porcinus Hog deer 2‡ + + + *  *        
14 Rusa unicolor Sambar 2‡ + + +(20) *   *  * *   * *
15 Elephas maximus indicus Elephant 3# + + +(2) *  *  * *   * *
16 Sus scrofa Wild pig 2‡ + + + *  *  *    * *
Domestic species
17 Bubalus bubalis Buffalo 2‡ + + +           
18 Equus ferus caballus Horse 2‡ + + +           
19 Bos taurus Cow 2‡ + + +           
20 Capra aegagrus hircus Goat 2‡ + + +            

Total number of wild species found in countries 44 14 171 33 3 7 9 7 7 1 3 9 7

SN Species Common name N Set I Set II Set III South Asian countries

AF BA BH IND MAL NE PA SR

Wild species1

1 Panthera tigris Tiger 3# + + +(2)  * * *  *   
2 Panthera pardus Leopard 7† + +(51) +(2) * * * *  * * *
3 Prionailurus bengalensis Leopard cat 2‡ + + + * * * *  * *  
4 Lutra sp. Otter 4† + + (89) +(3) * * * *  * * *
5 Antilope cervicapra Blackbuck 2‡ + + +  *  *  * *  
6 Boselaphus tragocamelus Nilgai 2‡ + + +(4)  *  *  * *  
7 Bos gaurus Gaur 2‡ + + +  * * *    *
8 Muntiacus muntjak Barking deer 2‡ + + +    *     
9 Capricornis thar Serow 2† + + +  * * *  *   
10 Naemorhedus goral Goral 2‡ + (14) + (31) +   * *  * *  
11 Hemitragus jemlahicus Himalayan tahr 2‡ + + +    *  *   
12 Gazella bennettii Chinkara 2‡ + + +    *   *  
13 Axis porcinus Hog deer 2‡ + + +  *  *  * *  
14 Rusa unicolor Sambar 2‡ + + +(20)  * * *  *  *
15 Elephas maximus indicus Elephant 3# + + +(2) * * * *  * * *
16 Sus scrofa Wild pig 2‡ + + + * * * *  *  *
Domestic species
17 Bubalus bubalis Buffalo 2‡ + + +         
18 Equus ferus caballus Horse 2‡ + + +         
19 Bos taurus Cow 2‡ + + +         
20 Capra aegagrus hircus Goat 2‡ + + +         

Total number of wild species found in countries 44 14 171 33 5 12 10 16 13 9 6
1Based on native range description in IUCN Red List. N, Number of samples. ‡Tissues. †Tanned skins. #Hair and tissue. Values in parentheses indicate 
additional samples tested against respective species. BR, Brunei; CA, Cambodia; ET, East Timor; IN, Indonesia; LA, Laos; MA, Malaysia; MY, 
Myanmar; PH, Philippines; SI, Singapore; TH, Thailand; VI, Vietnam; AF, Afghanistan; BA, Bangladesh; BH, Bhutan; IND, India; MAL, Maldives; 
NE, Nepal; PA, Pakistan; SR, Sri Lanka.
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rRNA and ZFX/ZFY (P1/P2) primers, 200 μM dNTPs, 
0.5 U Taq polymerase (Fermantas) and 40–50 ng of each 
DNA sample in a 20 μl reaction volume. For the primers 
of Set I, the cycling included 40 cycles of denaturation 
at 95°C for 45 seconds, annealing at 55°C for 1 minute, 
extension at 72°C for 1 minute and a final extension 
cycle at 72°C for 20 minutes. For the primers of Set II 
and Set III, all the conditions were the same as those of 
Set I except that the primer concentration was 0.3 μM. 
The amplified PCR products were subjected to 2.5% 
agarose gel electrophoresis for physical identification. 
The gel was prepared using 1× TAE buffer (40 mMTris 
acetate, 1 mM EDTA, pH 8) containing 0.2 μg/mL 
EtBr, and photography was carried out under UV light 
in the gel documentation system. We identified the sex 
based on the presence or absence of Y-specific bands 
in the samples. In addition, after screening for positive 
amplification with all three sets of primers, a total of 
218 samples (leopard, 53; otter, 93; goral, 31; chital, 
13; sambar, 20; nilgai, 4; elephant, 2; tiger, 2) were also 
tested. The number of samples tested with each sex 
marker is provided against the respective primer set in 
table 2.

Validating the replicability of primers

To check the repeatability of co-amplified 
mitochondrial DNA as an internal primer for PCR 
amplification was also crosschecked using an X 
chromosome linked to a ZFX primer. After the primer 
set was successfully amplified for the 20 mammalian 
species, we also tested these primer sets with a larger 
number of samples (n = 218) of different mammalian 
species, the details of which are shown in table 2. 
Furthermore, the wide applicability of these markers 
have also been used to understand male-biased 
predation by tiger using single hair samples of four prey 
species obtained from tiger scat; these findings were 
published in a separate paper (De et al. 2018).

RESULTS

We tested the reliability of PCR-based sex 
identification assays using three sets of primers for 
20 Indian mammalian species and suggested its 
applicability in mammals. The 44 samples from 
different mammalian species of known sexes were all 
amplified successfully with all three sets of primers, 
which had different amplicon sizes.  The primers of 
Set I amplified one band of 12S rRNA (384 bp) and a 
second band, that of a sex-specific SRY primer (157 bp, 
Fig. 2; Set I). The upper band of P1/P2 (internal marker, 
445 bp) and the lower band of SRY- Y53-3C and Y53-

3D (225 bp) could be visualized (Fig. 2; Set II) using 
the primers of Set II. With the third set of primers 
(Set III), the lower band of 12s rRNA (151 bp) and 
the upper band of SRY- Y53-3C and Y53-3D (225 bp) 
were amplified (Fig. 2; Set III). In addition, after these 
primer sets were screened for amplification of all 20 
mammalian species, they were used to identify the 
sex of different mammalian species using the different 
kind of samples (n = 218). The species tested are 
indicated against their respective primers (Table 2). We 
successfully extracted DNA from single hairs of tigers (n 
= 2), elephants (2), sambars (20), nilgais (4) and chitals 
(13) with the third set of primers. This set of primers 
has small amplicon sizes (151–225 bp) for both genes 
and can easily amplify DNA from degraded samples.

DISCUSSION

The method of PCR-based sex identification using 
three sets of primers described in the foregoing can be 
used for different mammalian species. It has potential 
use in identifying sex from small quantity samples, 
which is useful because samples in wildlife forensics 
and non-invasive genetics often have lower quality 
DNA. Such poor-quality DNA, especially with the 
presence of inhibitors, make obtaining large amplicons 

Fig. 2.  PCR amplification of sex primer with three different sets 
of primers. ♂ , male; ♀, female; +♂  and +♀, positive male and 
positive female; -ve, negative control; M, 100 bp leader. The samples 
amplified with Set-I and Set-II in figure 2 are identical; Set-III is 
depicted amplifying a different set of samples.
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difficult.
Most wildlife forensics and endangered species 

samples collected during status surveys (including 
non-invasive genetic samples) yield low-quality DNA 
in small quantities. Set I and Set II are useful for 
identifying sex from a wide range of samples that are 
encountered in wildlife forensics, such as blood strains, 
tissues and tanned skins (Hsieh et al. 2006; Banks and 
Wright 2007; Caniglia et al. 2010; Jun et al. 2011). Set 
III has amplicons of small sizes, and hence it can be 
used with degraded samples, such as those from articles 
made with hair (paint and shaving brushes, also tested 
in this study) (Domingo-Roura et al. 2006) and tanned 
skin (clothes, purses, ties, belts, etc.). Set III can also 
be used with samples such as antlers, horns, ivory and 
bones, which are frequently encountered in the illegal 
trade market (Banks and Wright 2007; TRAFFIC 
2011). This primer set also has a wide applicability in 
amplifying low-quality carnivore and herbivore DNA 
obtained from different samples (Farrell et al. 2000; 
Brinkman and Hundertmark 2009), especially in hair 
obtained from snares or prey species in carnivore scat 
(De et al. 2018); it has been proven that only a single 
hair is needed for DNA-based examination.

With molecular tools being used more and more 
in wildlife science, our study provides a method for 
low-cost molecular sexing of mammals in South and 
Southeast Asian countries using various biological 
samples. All three sets of primers may be used in 
wildlife forensic work and the conservation biology of 
South and Southeast Asian mammals, as most of the 
sample types yielded DNA < 500 bp long (Baker et al. 
2001; Butler et al. 2003; Brinkman and Hundertmark 
2009; Goyal et al. unpublished data). We suggest that 
at least two sets of primers be used for any biological 
samples to avoid any ambiguity.

CONCLUSIONS

Low-cost molecular sexing was performed 
on 20 mammalian species distributed in South and 
Southeastern countries. Three sets of universal primers 
were checked and successfully amplified in all the 
species, and they exhibited the potential to identify 
the sex of these species using the Y chromosome. 
Most samples utilized in conservation genetics are of 
poor quality and it is difficult to perform a single run 
amplification of larger fragments of DNA. Therefore, 
each set of primers was targeted based on the type of 
sample; the primers generated fragments of 151–445 bp 
long. The use of a combination of sex-linked genes and 
internal (sex-linked and mitochondrial) DNA primers 
provide unambiguous results for sex identification 

(Ortega et al. 2004). The method describes here has a 
wide applicability for conservation genetics and wildlife 
forensics in understanding sex-biased poaching and 
sex ratios in populations as a low-cost method. Among 
the different sets of primers used, Set III is the most 
effective for identifying sex using poor quality samples, 
such as single hairs from carnivore scats (De et al. 
2018), and understanding biased sex ratios in carnivore 
diets.
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