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Fire ants have long been known to be a major pest and have recently attracted renewed widespread 
attention due to the invasion of Solenopsis species, especially S. invicta, into many countries in Asia 
and Australia. Here, we surveyed fire ant specimens in Thailand with the aims of studying their colony 
biology and population structure. We sampled 38 colonies distributed in agricultural and urban areas 
throughout Thailand for species identification and found that all were S. geminata. We further genotyped 
13 microsatellite loci from 576 workers from 23 of these colonies. Analysis of these genetic data revealed 
that all colonies were polygynous with only a few queens. Queens from the same colonies were highly 
genetically related. Population structure was partitioned into two clusters. Pairwise FST values revealed 
very high genetic differentiation between colonies suggesting low gene flow among populations. This 
result suggests that queens were locally mated and founded colonies by a budding strategy. Isolation-by-
distance among local populations was not significant.
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BACKGROUND

Fire ants are one of the most important pest 
species distributed around the world (Tschinkel 2006). 
They often form large colonies at high densities in both 
urban and rural areas, and thus reduce crop production 
and harvest, damage electrical machinery, create 
health problems through their painful stings, and cause 
economic and biodiversity losses (McDonald 2006; 
Gutrich et al. 2007; Jetter et al. 2002). Because of their 
importance, fire ants have been extensively studied for 
its biology, distribution and application for pest control 
(Tschinkel 2006).

Most studies have focused on the red-imported fire 
ant, Solenopsis invicta, due to its high invasiveness and 
aggressiveness. In the Asia-Pacific region, it has recently 
invaded Australia, China, Hong Kong, Taiwan and Japan 

(Ascunce et al. 2011; Kyodo 2017; Kikuchi 2017). It 
remains unclear whether S. invicta has also invaded 
Thailand since systematic and extensive sampling 
throughout the country is lacking. Compared to S. 
invicta, the tropical fire ant, Solenopsis geminata, is less 
aggressive but actually has a greater worldwide invasive 
distribution (Wetterer 2011; Gotzek et al. 2015). So far, 
only S. geminata has been reported in Thailand (Bourmas 
et al. 2001; Hasin 2008; Sakchoowong et al. 2008; 
Jongjitvimol 2010; Etterer 2011; Wetterer 2011). 

Colony social form is an important factor in the 
biology of social insects (Bourke and Franks 1995). 
Individuals from a monogyne colony, especially with 
once-mated queens, are always more related to each 
other than those from a polygyne colony (Hamilton 
1964; Hölldobler and Wilson 1990). Consequently, 
monogyne colonies are more stable according to kin 
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selection theory than polygyne colonies, which can 
have queen-queen competition (Bourke and Franks 
1995). However, monogyne colonies have a higher risk 
of colony death through queen loss while polygyne 
colonies can tolerate the loss of some queens (Keller 
1995). The two social forms are tightly associated with 
queen morphology, mode of colony foundation, and 
ecological constraints (Bourke and Franks 1995; Keller 
1995; Wcislo 1995; Ross and Keller 1995; Cronin et 
al. 2013). For instance, monogyne queens are usually 
bigger and more fecund than polygyne queens, and thus 
they can found colonies independently, thereby rapidly 
occupying empty niches. In contrast, polygyne colonies 
are more fit under some ecological circumstances, 
such as high nest density. In S. invicta, monogyne 
workers are also bigger and more aggressive compared 
to polygyne colonies (Ross and Keller 1995; Araujo 
and Tschinkel 2010). This indicates that social form 
influences the biology, behavior, and life history trait of 
the social insects (Keller 1995; Ross and Keller 1995). 

These characters were shown to be under genetic 
regulation in S. invicta, presented previously as a single 
gene with two alleles (Gp-9B and Gp-9b) (Keller 1995; 
Keller and Ross 1998 1999; Ross and Keller 1998; 
DeHeer et al. 1999; Goodisman et al. 1999; Gotzek 
and Ross 2007; Huang and Wang 2014), but later on it 
was found to be a supergene (with SB and Sb alleles) 
containing ~600 genes and composed of multiple large 
inversions (Wang et al. 2013; Huang et al. 2018; Stolle 
et al. 2019; Yan et al. 2020). In addition, the SB and Sb 
alleles of the supergene are also present in six additional 
related species in the South American clade of fire ants 
(Stolle et al. 2019; Yan et al. 2020). Altogether, the 
evolution of the genes controlling social structure in 
this clade is likely conserved (Krieger and Ross 2002; 
Gotzek et al. 2007; Manfredini et al. 2013; Stolle et al. 
2019; Yan et al. 2020). 

In contrast to the socially polymorphic South 
American fire ants, a different mode of social form 
evolution has likely occurred in S. geminata. The two 
social forms have identical Gp-9 genotypes, suggesting 
the absence of a supergene (Krieger and Ross 2002); 
thus, we cannot use this locus as a proxy for social 
form in S. geminata. In addition, the polygyne form 
has been proposed to arise because of loss of allelic 
diversity at genes controlling queen acceptance after 
a genetic bottleneck (Mackay et al. 1990; Ross et al. 
2003). Interestingly, polygyny in one population in 
Florida is also associated with facultative asexuality; 
while workers are produced normally by mating, queens 
are clonal offspring (Lacy et al. 2019). Here, we studied 
the social form and population structure of S. geminata 
in Thailand using microsatellite genotyping of 576 
workers from 23 colonies distributed across of Thailand. 

We analyzed colony social form, relatedness among 
queens and workers within a colony, and determined 
the genetic structure of S. geminata in Thailand. As this 
species has long been known to be an important pest in 
crop fields, we focused on the biology of S. geminata 
in Thailand with respect to its distribution, population 
structure, and colony social form.

MATERIALS AND METHODS

Sample collection and identification

We collected a total of 38 fire ant colonies from 
land adjacent to different crop fields (e.g., corn, rice, 
banana, lime, santols) and urban areas in all six parts 
of Thailand (i.e., Northern, Western, Eastern, Southern, 
Northeastern and Central regions). Of these, eight 
colonies came from five provinces in the Central region; 
five colonies from three provinces in the Eastern region; 
six colonies from four provinces in the Northeastern 
region; four colonies from two provinces in the 
Northern region; five colonies from three provinces 
in the southern region; and 10 colonies from three 
provinces in the Western region of Thailand. We also 
recorded the position of the colonies, crop types, and 
interaction of fire ants with other insects (Table 1, Fig. 1).

To obtain colonies with queens to be observed in 
the lab, we dug up fire ant mounds from the field and 
placed them into buckets. These buckets were dripped 
overnight to separate fire ants from soil. Ants and brood 
were then placed into plastic boxes coated with fluon 
to prevent ant escape and supplied with an artificial 
nest made from petri dishes containing moistened 
plaster. Ants were fed with insects, tuna and honey 
using standard methods for colony rearing (Jouvenaz 
et al. 1977). The number of reproductive queens were 
observed after the establishment of the colonies for at 
least a week. If dealate queens were present, we reared 
them with some workers and brood for a longer period 
to test if the queens were inseminated and laid fertilized 
eggs. However, we only obtained a single fertile queen 
from one colony from Chanthaburi (Sge30). We reared 
this subcolony (Sge30M) in the laboratory for almost a 
year and finally collected her workers for genotyping. 
From the remaining 37 nests we collected only workers 
and extracted DNA from 24 workers per colony. 
Worker samples were put in 95% ethanol for species 
identification and DNA extraction follow by genotyping 
to determine the number of queens in each colony. 

For species identification, we examined worker 
shape from multiple individuals. Some S. geminata 
workers have large square-shaped heads whereas S. 
invicta workers lack such square-shaped heads. We then 
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verified the S. geminata species identification based on 
the technical key criteria (Sarnat 2008; AntWeb 2017): 
the presence of a vertex with a deep groove on the head, 
black mandibles without teeth, no antennal scrobes, 
absence of a petiole process, unsculptured heads and 
bodies, and disproportionately large and square-shaped 
head that were present on at least ten major and minor 
ants of each colony.

Microsatellite genotyping

We extracted DNA using the CTAB method 
(modified from Doyle and Doyle 1987) and amplified 
19 microsatellite loci (Table S1) developed by 

Ascunce et al. (2009), Chen et al. (2003) and Krieger 
and Keller (1997). Due to technical difficulties in 
PCR amplification and non-specific, monomorphic, 
or ambiguous patterns at some loci, only 13 loci 
were chosen for genotyping in the main analysis. We 
genotyped 24 workers from each colony from a total of 
23 colonies distributed throughout Thailand. We used a 
modified primer labeling method developed by (Blacket 
et al. 2012) except for the two primers, M-II and M-V, 
which were labeled directly. PCR reactions were done 
in a 10 µL reaction mixture containing PCR buffer, 
2 mM MgCl2, 0.2 mM dNTP mix, 0.5 µM of each of 
F and R primer, 0.25 µM of M13 primer (except for 
M-II and M-V), 1 ng of template DNA, and 0.5 U of 

Table 1.  Coordinates and information on the S. geminata colonies sampled

Part of Thailand Province Colony Genotyped? Area information Coordinate

N Chiang Mai Sge04 Yes corn farm 18°47'44.6"N 98°57'35.3"E
N Chiang Mai Sge06 Yes university area 18°48'13.1"N 98°57'10.8"E
N Lampang Sge08 No urban area 18°17'23.0"N 99°28'28.8"E
N Lampang Sge17 Yes vegetable farm 18°17'57.9"N 99°27'35.0"E
NE Kalasin Sge20 No cassava farm 16°32'08.9"N 103°25'41.9"E
NE Loei Sge19 Yes near rambutan trees 17°28'53.7"N 101°37'44.6"E
NE NakhonRatchasima Sge01 Yes vegetable farm 14°21'57.8"N 101°53'28.9"E
NE SakonNakhon Sge16 Yes rice farm 17°23'01.4"N 104°06'08.0"E
NE SakonNakhon Sge22 No urban area 17°23'24.8"N 104°06'14.4"E
NE SakonNakhon Sge23 No rice farm 17°23'01.4"N 104°06'08.0"E
C Bangkok Sge05 Yes university area 13°50'33.6"N 100°34'17.4"E
C Chai Nat Sge36 Yes integrated farming (e.g., rice, santols) nest1 15°24'05.0"N 100°05'25.7"E
C Chai Nat Sge37 No integrated farming (e.g., rice, santols) nest2 15°24'05.0"N 100°05'25.7"E
C Chai Nat Sge38 No banana and lime trees 15°14'12.0"N 100°04'20.2"E
C KamphaengPhet Sge33 No bamboo trees 16°38'27.9"N 99°19'53.9"E
C KamphaengPhet Sge34 Yes sugar apples 16°29'43.4"N 99°40'14.4"E
C Phitsanulok Sge18 Yes vegetable farm 16°55'03.8"N 100°12'22.3"E
C Supanburi Sge39 Yes vegetable farm 14°26'20.3"N 100°09'38.4"E
E Chanthaburi Sge29 No mangosteens 12°38'06.8"N 102°00'14.0"E
E Chanthaburi Sge30 Yes barn of rambutans, longazones, and mangosteens 12°38'16.8"N 101°59'52.2"E
E Rayong Sge31 Yes vegetable farm 12°40'06.5"N 101°23'04.9"E
E Trat Sge27 Yes barn of rambutans, longazones, and mangosteens 12°21'46.0"N 102°26'26.8"E
E Trat Sge28 Yes palm tree near the lime trees 12°21'43.4"N 102°26'24.0"E
S Chumphon Sge13 Yes seaside 9°57'11.4"N 99°09'30.7"E
S Chumphon Sge21 No urban area 9°44'03.1"N 99°06'06.6"E
S SuratThani Sge24 No urban area 8°55'37.9"N 99°16'30.5"E
S Trang Sge14 No urban area 7°37'35.2"N 99°33'54.0"E
S Trang Sge15 Yes seaside 7°20'28.9"N 99°22'23.1"E
W Kanchanaburi Sge25 Yes near vegetable farm 14°07'23.6"N 99°19'10.0"E
W Kanchanaburi Sge26 No corn farm 14°07'11.8"N 99°19'00.1"E
W Phetchaburi Sge02 Yes lime tree 12°44'47.4"N 99°42'38.7"E
W Phetchaburi Sge03 Yes corn farm 12°44'32.9"N 99°42'44.2"E
W Phetchaburi Sge08 No urban area 12°43'40.2"N 99°45'20.6"E
W Phetchaburi Sge09 Yes vegetable farm 12°44'31.9"N 99°42'46.0"E
W Phetchaburi Sge10 Yes vegetable farm 12°44'34.7"N 99°42'43.3"E
W Phetchaburi Sge11 No peanut farm 12°44'35.9"N 99°42'43.3"E
W Phetchaburi Sge12 No marigold flower farm 12°44'49.7"N 99°42'38.4"E
W Tak Sge32 Yes urban area 16°41'14.6"N 99°16'38.8"E
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Fig. 1.  Locations of the 38 S. geminata colonies collected in this study. Colonies names are colored to indicate if samples were genotyped (blue) or 
not genotyped (brown).
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Taq polymerase (Apsalagen® for most loci, and Qiagen 
for C147, C367, C485 and Sol-55). All loci were 
amplified using the same standardized cycling profile 
with Eppendof Thermocyclers: initial denaturation step 
at 94°C for 3 min, followed by 35 cycles at 94°C (45 s), 
55–60°C (30 s) and 72°C (30 s), and a final elongation 
step at 72°C (5 min). Samples of the PCR products 
(4 µL) were visualized on 2% agarose gels for an initial 
check before genotyping by fragment analysis using an 
ABI 3730XL DNA analyzer (Applied Biosystem). All 
genotypes were called using Peak Scanner Software 
(Applied Biosystem).

Social form determination 

The numbers of queens and males that were the 
parents of the genotyped workers were determined 
by Sibship Reconstruction (Wang 2004) and Sibship 
Inference (Wang and Santure 2009), implemented in 
Colony software (Jones and Wang 2010) using the 
Full Likelihood (FL) analysis method with updated 
allele frequencies and no prior parameter setting. As 
Solenopsis queens typically mate only once (Ross 
and Fletcher 1985a) and although multiple matings 
occasionally occur in some populations (Lawson et al. 
2012), we set the parameter as female monogamous. We 
used the predicted queen genotypes from this analysis 
for sibship evaluation to test if polygyne queens were 
full siblings.

Population analysis

We calculated the number of alleles as well as 
the observed and expected heterozygosity (HO and 
HE) values for each colony using the Microsatellite 
Toolkit (Park 2001). At some loci, we only obtained 
the genotype from a few individuals. Therefore, to 
avoid bias when calculating the average HO and HE for 
each colony, we decided to use only loci with ≥ 70% 
(14 individuals) of the 24 individuals with scorable 
genotyping data. We also calculated the polymorphic 
information content (PIC) for all colonies. We calculated 
the genetic differentiation (FST) between S. geminata 
colonies using FSTAT (Goudet 1995). Significant 
differentiation between colonies was determined based 
on the “genic differentiation” test using Genepop 
(Rousset 2008). Sequential Bonferroni correction (Holm 
1979) was also applied to correct for multiple testing.

We determined the population structure using 
STRUCTURE v.2.2 software (Hubisz et al. 2009) and 
the best clustering (i.e., best K) was chosen based on 
the delta K method (Evanno et al. 2005). Isolation-by-
distance (IBD) was determined using the Mantel test 
implemented in GenAlEx (Peakall and Smouse 2012). 

The statistical significance of the parameter estimates 
was obtained based on 999 permutations.

Relatedness analysis

We used the Related software (Pew et al. 2015) 
to calculate relatedness between pairs of queens and 
workers using the method from Queller and Goodnight 
(1989). The two-sided Wilcoxon Rank-Sum Test was 
used to test the differences between the relatedness 
values between queens within the same colonies and 
between queens of different colonies. Box plots were 
drawn in R (R Development Core Team 2010).

RESULTS

Fire ant species and nest structure

All S. geminata nests found in this study were 
flat compared to the more domed mounds of S. invicta 
in spring (e.g., in the USA) and were often found in 
open areas with dry soil. We rarely found S. geminata 
colonies in shaded areas under trees. The colonies 
usually occupied an area > 1 m in diameter and could be 
> 50 cm deep depending on the nature of the soil. They 
often made the nest in a place very safe from flooding or 
human disturbance, e.g., under the concrete of buildings 
or under the roots of living or dead trees (Figs. S1–
S2). Thus, it was very difficult to get queen(s) from the 
mature colonies. In addition, during our surveys of fire 
ants, we did not find any colonies of S. invicta.

Crop plants associated with fire ants

S. geminata colonies were rarely found associated 
with big trees—e.g., palm trees, rubber plants, and 
mangoes—but they were often found near small plants, 
e.g., vegetable farms, rice or corn farms (Table 1). We 
also did not find S. geminata near any forest or uphill 
areas. However, it was often difficult to find colonies 
in crop fields, mostly likely because insecticides were 
used. We found them around the areas growing rice, 
corns peanuts, rambutan, mangosteens, lanzones, 
vegetables (e.g., morning glory, tomato, limes), and 
marigold flowers. In some parts of Thailand (i.e., 
Northeastern) we could find S. geminata easily, possibly 
because they are more abundant there. It is unlikely that 
this species is associated with any specific plant crop, 
considering that we did not find them in other areas 
in the north that grew the same crops. For Southern 
Thailand, we did not find S. geminata in the mangosteen 
or rambutan fields but did at the urban or seaside areas. 
We occasionally found that S. geminata tended aphids 
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(i.e., peanut fields) and caused problems for some crops, 
e.g., stealing vegetable seeds, biting tomato seedlings, 
causing damage to the flower of lanzone trees and 
thus depressing fruit yield, and causing burn spots on 
rambutans. S. geminata were always a nuisance to 
farmers due to their painful stings. 

Colony social form and genetic relatedness

All 38 collected colonies were S. geminata. We 
determined the social form for 23 of the colonies by 
genotyping 24 workers per colony, followed by sibship 
analysis using Colony software (Jones and Wang 2010). 
This analysis revealed that all 23 were polygynous 
with the minimum number of queens ranging from two 
to seven (Table 2). Of these 23 colonies, four had two 
queens, seven had three queens, eight had four queens, 
three had five queens and only one colony had seven 
queens. The average number of queens per colony was 
3.5.

Colony Sge30 (Chanthaburi), which was predicted 
to have four queens, was the only one where we were 
able to capture a queen. We isolated this queen with 
some workers and maintained this subcolony (Sge30M) 

for about one year before collecting her workers for 
genotyping. Sibship analysis predicted that these 
workers were derived from one singly-mated queen, as 
expected. 

Queens were unrelated between nests, with the 
average values for all pairwise comparisons of -0.037 
± 0.34 SD. In contrast, queen relatedness values were 
high within nests, ranging from 0.58 ± 0.15 (Sge31) 
to 1 (Sge09, Sge10, Sge02 and Sge19) (Table 2) with 
the average value for all colonies of 0.85 ± 0.15. The 
genetic relatedness values of queens within nests were 
significantly different from that of queens between 
nests (p-value < 0.001, two-sided Wilcoxon Rank-Sum 
Test; Fig. 2). Given the higher within nest relatedness 
values, we considered the possibility that queens might 
be sisters. Sisters would share the same paternal alleles. 
Detailed examination of the predicted queen genotypes 
revealed that this might indeed be the case for most 
queens (55 of the total of 82 queens from 20 colonies; 
Table S2). Similarly, the values of average within-nest 
relatedness of workers were also very high (> 0.7) in all 
colonies and the average across all colonies was 0.89 ± 
0.06. 

Table 2.  Number of queens, relatedness, observed heterozygosity (HO), expected heterozygosity (HE) and average 
number of alleles per locus for each S. geminata colony

Colony No. of queens Average queen relatedness Average worker relatedness HO HE No. of Alleles

Sge04 4 0.97 ± 0.037 0.912 ± 0.064 0.16 ± 0.03 0.14 ± 0.053 1.57 ± 0.535
Sge06 4 0.97 ± 0.036 0.913 ± 0.064 0.34 ± 0.037 0.23 ± 0.112 1.86 ± 0.9
Sge17 3 0.68 ± 0.211 0.808 ± 0.132 0.35 ± 0.039 0.29 ± 0.1 1.86 ± 0.69
Sge19 3 1 ± 0 0.934 ± 0.049 0.4   ± 0.041 0.25 ± 0.102 1.83 ± 0.753
Sge01 3 0.67 ± 0.035 0.838 ± 0.101 0.59 ± 0.032 0.39 ± 0.062 2.2   ± 0.632
Sge16 3 0.80 ± 0.078 0.883 ± 0.050 0.46 ± 0.032 0.3   ± 0.07 1.8   ± 0.632
Sge05 3 0.60 ± 0.160 0.806 ± 0.148 0.52 ± 0.04 0.35 ± 0.075 1.86 ± 0.378
Sge36 2 0.83 0.866 ± 0.115 0.4   ± 0.038 0.29 ± 0.104 1.71 ± 0.756
Sge34 5 0.90 ± 0.043 0.841 ± 0.141 0.41 ± 0.044 0.3   ± 0.095 2.17 ± 0.408
Sge18 2 0.92 0.956 ± 0.042 0.28 ± 0.042 0.17 ± 0.107 1.4   ± 0.548
Sge39 5 0.61 ± 0.163 0.720 ± 0.183 0.63 ± 0.042 0.48 ± 0.08 2.83 ± 0.753
Sge30 4 0.95 ± 0.039 0.878 ± 0.093 0.36 ± 0.043 0.25 ± 0.108 1.83 ± 0.753
Sge30M 1 NA NA 0.23 ± 0.029 0.12 ± 0.074 1.33 ± 0.5
Sge31 4 0.44 ± 0.272 0.911 ± 0.114 0.5   ± 0.043 0.29 ± 0.103      2 ± 1.095
Sge27 7 0.93 ± 0.061 0.961 ± 0.078 0.09 ± 0.044 0.08 ± 0.083 1.5   ± 0.707
Sge28 4 0.63 ± 0.306 0.897 ± 0.161 0.07 ± 0.036 0.06 ± 0.062 1.5   ± 0.707
Sge13 4 0.83 ± 0.072 0.891 ± 0.075 0.35 ± 0.038 0.26 ± 0.101 1.71 ± 0.756
Sge15 4 0.87 ± 0.138 0.954 ± 0.044 0.17 ± 0.025 0.11 ± 0.057 1.4   ± 0.516
Sge25 4 0.93 ± 0.027 0.944 ± 0.052 0.27 ± 0.031 0.17 ± 0.073 1.44 ± 0.527
Sge03 5 0.83 0.863 ± 0.121 0.23 ± 0.034 0.19 ± 0.075 1.71 ± 0.488
Sge09 2 1 0.846 ± 0.200 0.74 ± 0.067 0.44 ± 0.07 2 ± 0
Sge10 3 1 ± 0 0.967 ± 0.064 0.05 ± 0.026 0.04 ± 0.043 1.33 ± 0.577
Sge02 2 1 0.951 ± 0.053 0.24 ± 0.027 0.15 ± 0.062 1.64 ± 0.505
Sge32 3 0.96 ± 0.032 0.954 ± 0.037 0.45 ± 0.037 0.26 ± 0.097 1.63 ± 0.744

± indicates standard deviation.
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Allelic diversity and population structure

We found that genetic diversity in S. geminata 
in Thailand was lower than the native range. The 
average number of alleles per locus across all colonies 
was 5.15 (Table 3). Within each colony, average 
numbers of alleles per locus ranged between 1.33 and 
2.83 (mean = 1.755; Table 2) compared to the native 
populations which was 5.27 (Gotzek et al. 2015). 
In contrast to the low allelic diversity, the average 

observed heterozygosity found in this study was not 
different from that of native populations. The observed 
heterozygosity (HO) in each colony ranged between 0.05 
(Sge10) and 0.74 (Sge09), and expected heterozygosity 
(HE) ranged between 0.04 (Sge10) and 0.48 (Sge39) 
(Table 2). The averages of HO and HE across all loci 
were 0.33 and 0.49, respectively (Table 3), while the 
average HO and HE in the native range is 0.358 and 
0.587, respectively (Gotzek et al. 2015). The locus with 
highest heterozygosity (HO = 0.564, HE = 0.732) and 

Table 3.  Number of alleles and polymorphic information content (PIC) for each microsatellite marker

Locus No. of alleles HO HE PIC

C368 5 0.5648 0.4695 0.3953
C334 4 0.4153 0.361 0.3028
C121 6 0.4368 0.7078 0.6713
C367 4 0.5639 0.7324 0.6822
C485 7 0.1234 0.4888 0.4216
Sol-11 7 0.364 0.5098 0.4678
Sol-42 3 0.4947 0.4427 0.3508
Sol-49 3 0.0418 0.3441 0.3009
Sol-55 7 0.2787 0.4834 0.461
M-II 6 0.1787 0.6828 0.6347
M-III 4 0.5395 0.5046 0.4436
M-IV 5 0.0952 0.4605 0.3963
M-V 6 0.1941 0.2779 0.2674

Fig. 2.  Genetic relatedness (Queller and Goodnight 1989) of queens within nests was significantly different (p-value < 0.001, two-sided Wilcoxon 
Rank-Sum Test) from relatedness between nest.
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highest polymorphic information content (PIC, 0.682) 
was C367, and the locus with lowest heterozygosity (HO 
= 0.0418, HE = 0.3441) and lowest PIC (0.301) was Sol-
49. 

Despite the low number of alleles found in the S. 
geminata populations, genetic differentiation between 
colonies was very high in general (Table S3). Most 
colony pairs (> 90%) had FST values > 0.25. The 
minimum FST value was 0 (Sge10 vs. Sge30) and the 
maximum was 0.919 (Sge02 vs. Sge10). To determine 
whether the colonies were genetically structured, we 
also conducted a STRUCTURE analysis. We found 
that the 23 colonies including subcolony Sge30M were 
clustered into two groups shown in red and green in 
figure 3. We found two clusters of the populations in 
almost all parts of Thailand, except in the Northern 
and Northeastern parts (Fig. 4). To examine if genetic 
distance (FST) correlates with geographic distance 
we examined Isolation-by-distance (IBD) but did 
not observe a significant IBD signal among local 
populations (RXY = 0.113; P = 0.171).

DISCUSSION

Colony social form

We conducted the first study, to our knowledge, on 
the social form and population structure of S. geminata 
in Thailand. We found that all S. geminata populations 
in Thailand were polygynous with only a few queens 
(2–7). In comparison, previous studies in northwest 
Gainesville, Florida, USA and in Veracruz, Mexico 
reported queen numbers ranging from 16–31 (Adams 
et al. 1976; Mackay et al. 1990). This may be partly 
because of an underestimated number of queens from 
genotyping only 24 workers per colony, colonies in 

Thailand are not highly polygynous, or reproductive 
skew, a situation where a subset of queens contribute 
disproportionately more progeny (Ross 1988). Our 
observations are similar to those from the Galapagos 
Island (Williams and Whelan 1991) and the common 
observation of polygyny in invasive population in the 
old world by Gotzek et al. (2015), but contrasts with the 
finding only the monogyne social form of S. geminata 
in Taiwan (Lai et al. 2015). Polygyny level correlates 
with nest density for S. invicta (Ross and Keller 1995). 
If this is also the case for S. geminata, the low number 
of queens found in Thailand may be because of much 
lower nest density (> 20 m2 per nest) compared to the 
native population such as in Brazil with 2,500–6,000 
nests per hectare (0.6 m2 per nest) (Mackay et al. 1990). 

Polygynous colonies could be formed by budding 
or via pleometrosis, where unrelated queens cooperate 
in colony founding (Keller 1995; Ross and Keller 
1995). We found very high within-nest relatedness 
among queens within a colony, suggesting that S. 
geminata in Thailand may found colonies through a 
budding strategy rather than by pleometrosis. This 
is also consistent with the low population densities 
found in this study, as pleometrosis is favored in high 
population density situations (Tschinkel and Howard 
1983). Our observations are similar to those found for 
the S. geminata populations in the USA (Ross et al. 
2003). 

The very high relatedness values among queens 
within a colony could indicate that many of these 
queens are sisters (Table S2). A second potential 
explanation for the high relatedness values observed is 
that this is a consequence of the low number of alleles 
at each locus obtained in this study. Many alleles could 
be shared between unrelated individuals within each 
colony, potentially artificially inflating relatedness. 

Fig. 3.  The population structure of 23 colonies of S. geminata in Thailand clustered into two groups, cluster 1 (green) and cluster 2(red).
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Fig. 4.  Locations of the 23 fire ant colonies analyzed in this study. Pie charts mapped onto the Thailand map indicate population structure proportions 
from figure 3.
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Ecology of S. geminata

We found that S. geminata preferred to nest in dry, 
open, sunny areas rather than wet areas, which is similar 
to a previous finding (Harris et al. 2005). S. geminata 
is often found in urban areas and many crop fields 
in Thailand, including rice, corn, peanuts, rambutan, 
mangosteens, lanzones, morning glories, tomato, limes, 
and marigold flowers. We also found that S. geminata 
is a pest for humans as well as agricultural plants as has 
previously been reported (Risch and Carroll 1982; Way 
and Khoo 1992). We rarely found many S. geminata 
nests in the same area, again indicating low population 
densities of S. geminata in Thailand compared to 
its populations in native areas (Mackay et al. 1990). 
This may be due to the wide and extensive usage of 
pesticides in agricultural areas in Thailand. 

Population structure

We found very low genetic variation for S. 
geminata in Thailand. The average number of alleles 
per locus for each colony / population was very low 
(mean 1.755) compared to that of the native population 
(mean 5.267) (Gotzek et al. 2015). However, we could 
not compare each locus in this study to the result from 
Gotzek et al. (2015) due to the unavailability of the 
raw data, but we could compare our result to those of 
previous studies for some particular loci. For example, 
for loci C368, C121, C367, and C485, the numbers of 
alleles in the S. geminata native population were 13, 
15, 8, and 12, respectively (Ascunce et al. 2009), but 
only 5, 6, 4, and 7, respectively, in our study. This may 
be because, as an invasive species in Thailand (Gotzek 
et al. 2015), S. geminata has presumably experienced 
a genetic bottleneck (Harris et al. 2005). Low genetic 
diversity of S. geminata in Thailand was also correlated 
with our results that only two population clusters were 
found (Fig. 2), which is similar to only a few clusters 
of invasive populations of S. invicta found in Taiwan, 
China and Australia (Ascunce et al. 2011). Because our 
surveyed colonies were all polygynous, an additional 
reason for the low genetic variation could lie with the 
proposed evolutionary origin of polygyne S. geminata. 
At least for one US population, the model is that they 
are derived from monogyne populations that have gone 
through extensive genetic bottlenecks and reproductive 
isolation (Ross et al. 2003). Not finding any monogyne 
colonies also implies that polygyny probably evolved 
outside of and prior to the invasion of Thailand.

Despite the low number of alleles in the S. 
geminata populations, heterozygosity was high in 
most populations (Table 2), which was similar to the 
study of native populations (Gotzek et al. 2015). High 

heterozygosity was found to be associated with the 
haplodiploid sex determination system, specifically 
those using a complementary sex determination system, 
(Ross and Fletcher 1985b; Ross 1993). Two colonies, 
Sge28 and Sge10, did display lower heterozygosity, 
which may be due to low allelic diversity at most 
loci, and a low number of loci (3 loci) successfully 
genotyped. Additionally, this may be partly due to some 
technical problems on DNA quality in these colonies 
and lower signal from indirect labeling.

The FST values were also generally very high 
between colonies (Table S3), suggesting high genetic 
differentiation and low gene flow among colonies in 
this study (Wright 1921 1922). This is likely due in part 
to most colonies being in different provinces with very 
long geographic distances. Our results contrast with 
a study by Ross et al. (2003) who found low genetic 
differentiation between polygyne colonies; however, a 
major difference was their samples were not far away (all 
within 15.6 miles) compared to our study (the average 
geographic distance among colonies was 430 km; Table 
S3). Although some colonies were in the same province 
(e.g., Sge02, Sge03, Sge09, and Sge10), the colonies we 
excavated were not close to each other (> 50 m). 

If S. geminata in Thailand had a continuous 
population with l imited dispersal ,  relatedness 
values (FST) would be negatively correlated with the 
geographical distance, i.e., IBD. However, we did not 
observe IBD. Thus, we suggest that perhaps Thailand 
populations undergo metapopulation dynamics with 
local extinctions and recolonizations (Levins 1969; 
Hanski 1998). In line with metapopulations, S. geminata 
is a small insect frequently found occupying fragmented 
areas (e.g., near crop fields or edges of urban areas). 
They appear to have low dispersal patterns, as indicated 
by colonies being founded presumably through a 
budding strategy often composed of sister queens (Table 
S2), constraining them to their locality. Given their low 
population densities, and exacerbated by competition 
with native species and by pesticide use, subpopulations 
are likely prone to extinction. Recolonization would 
then occur through rare long distance dispersal by 
mating flights and, more probably, via widespread 
human transport of agricultural products or soil. 

Another possible, and perhaps complementary, 
explanation for our population genetics results (i.e., 
two genetic clusters, significant FST, lack of IBD, and 
apparent limited dispersal) is that multiple invasions 
of S. geminata into Thailand have occurred. This is 
a distinct possibility as S. geminata is commonly 
intercepted by quarantine officials at the borders of 
many countries (Ward et al. 2006; Bertelsmeier et al. 
2018; Suhr et al. 2019; Wylie et al. 2020). Further 
studies will shed light on the number of invasions into 
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Thailand.
Despite their low density and patchy distribution, 

we did find S. geminata throughout the country, and 
thus, the invasion of S. geminata in Thailand can be 
considered successful. Importantly, a closely related 
species, S. invicta, which is far more aggressive and 
is now invading many Asian countries anew, draws 
our attention because if it were to invade successfully, 
it could spread throughout the country and result in 
greater ecological problems. The regular monitoring 
for S. geminata and other alien Solenopsis species, 
especially S. invicta, are thus recommended for the 
protection of Thailand’s native species and ecosystems.

CONCLUSIONS

Our study is the first study to explore the colony 
structure of S. geminata in Thailand and our finding of 
low genetic diversity supports previous studies that S. 
geminata is invasive in South-East Asia. Further studies 
on social forms and niches of S. geminata in South-East 
Asia are necessary to better understand the ecology of 
this invasive species.
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Supplementary Materials

Fig. S1.  Characteristics of S. geminata nests. Nests 
are flat and have many entrances scattered around (A-
B). Nests can be deeper than 30 cm (C–D). Red arrows 
indicate larval chambers. (download)

Fig. S2.  Fire ant nests are often found in a very secure 
place, e.g., under hard soil (A), in the roots of palm 
trees (B), roots of dead trees (C), and in the concrete of 
buildings (D). (download)

Table S1.  Microsatellite primers used in this study. 
(download)

Table S2.  Full-sib analysis of the predicted queens 
from the same colonies. (download)

Table S3.  Genetic differentiation as FST (above 
diagonal) and geographic distance (km, below diagonal) 
between the 23 colonies of S. geminata. Population 
pairs where the genetic differentiation test was 
significant (after sequential Bonferroni correction) are 
in bold. (download)
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