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The balanid barnacle, Amphibalanus amphitrite, is known as one of the most common fouling species in 
the world. A phylogenetic study using material from around the world recovered three distinct clades for 
this species. Material from the Persian Gulf (PG) and the Gulf of Oman (GO) were not included in that 
survey. In the present study, we aimed to assess the genetic diversity of the balanid barnacles of these 
two gulfs and to evaluate their phylogeography. In total, 94 COI DNA sequences were obtained from the 
PG and the GO material. Most of these sequences clustered into a single clade, corresponding to clade 
I of the previous global study. However, two sequences, one from the PG and one from the GO, fell into 
a separate clade corresponding to clade III of the previous study.  These two gulfs share some common 
haplotypes, but host several unique ones that are separated from the most common haplotype mainly by a 
single mutation.  Based on various indices, the genetic diversity of the PG material was higher than that of 
the GO. Low values of ΦST show a regular gene flow among the stations and the two gulfs. The Bayesian 
skyline plots and the mismatch distribution analyses both showed signs of a recent population expansion 
in the PG and the GO. We also modeled the potential distribution areas for A. amphitrite to reveal the 
separate suitable habitats for the clades. The current phylogeographic status and genetic diversity of A. 
amphitrite in the PG and GO appears to have been shaped by both historical events and recent human 
activities.
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BACKGROUND

Knowledge of the distribution patterns of 
marine species is important for understanding their 
ecology and biogeography (Robinson et al. 2011). 
These patterns may be changed by human-mediated 
dispersal on a global scale (Gallardo et al. 2015), 
leading to the possible homogenization of the world’s 
biota, including those associated with plate tectonics 
or glacial cycles (Brown and Lomolino 1998; Bank 
et al. 2015). In coastal and estuarine habitats, most 
structural and functional modifications of communities 
in the recent decades were caused by the introduction 
and establishment of non-native species (Ruiz et al. 
1999; Levin and Crooks 2011). By creating movement 
corridors, transport networks have promoted the 
dispersal of non-native species to new regions and 
thus caused stress to native species by altering their 
habitats (Hulme 2009). International marine shipping 
networks, which account for 90% of world trade, can 
catalyze the spreading of many marine organisms and 
the establishment of their populations far beyond their 
native home range (Hulme 2009; IMO 2021). 

Biofouling significantly promotes the dispersal 
o f  o rganisms ,  inc luding  organisms  wi th  low 
inherent dispersal capacity, and the consequence is 
increased gene flow between populations, making a 
homogenized genetic structure (Olden et al. 2004; 
Crispo et al. 2011). For instance, despite limited 
larval dispersal of polychaetes Hydroides elegans 
(Haswell 1883), microsatellites studies revealed a 
high level of genetic similarity between seven sub-
populations  from the Atlantic, Pacific, and Indian 
Oceans and the Mediterranean Sea (Pettengill et al. 
2007). Although this implies that few migrants may 
be sufficient to homogenize local genetic variation 
(Hartl and Clark 2007; Hellberg 2009; Pannacciulli 
et al. 2009 2017), genetic differentiation sometimes 
remains even for species with high dispersal capacity 
over long distances. The maintenance of distinct 
genetic profiles of the cosmopolitan marine planktonic 
diatom Pseudo-nitzschia pungens (Casteleyn et al. 
2010), the pedunculate and acorn barnacles Pollicipes 
sp. (Quinteiro et al. 2007) and Tetraclita sp. (Tsang 
et al. 2012; Reynolds et al. 2014), may have been 
due to patterns of oceanic currents, natural selection, 
geographic distance or historical events, respectively.

Barnacles are highly conspicuous for having a 
wide distribution caused largely by ship hull fouling 
or ballast water (Carlton et al. 2011; Gollasch and 
David 2011). These animals settle on and colonize 
diverse types of hard substrates including rocks, man-
made marine structures and sailing vessels. Some 
species are “sessile voyagers” on turtles, sea snakes, 

or whales (Kim et al. 2020; Dreyer et al. 2020) and 
can be found on floating and drifting objects such as 
timber, cuttlefish bones, bottles, cans, and light plastic 
sheets. Barnacles will affect economic loss by causing 
increased fuel consumption of vessels and by damaging 
submarine structures (Holm 2012). The widespread 
barnacle species, Amphibalanus (= Balanus) amphitrite 
(Darwin 1854) from the family Balanidae (Pitombo 
2004; see Chan et al. 2021 for the latest barnacle 
classification) is commonly used as a model organism 
for ecological studies (Clare et al. 1994; Holm et al. 
2000; Khandeparker et al. 2002; Lagersson and Høeg 
2002; Leslie et al. 2005; Wong et al. 2011; Ip et al. 
2021; Campanati et al. 2016), and antifouling assays 
(Rittschof et al. 1992; Hirota et al. 1996; Hellio et al. 
2004; Maréchal and Hellio 2011). This barnacle is a 
common intertidal fouling species in tropical and warm 
temperate waters worldwide (Henry and McLaughlin 
1975; Chen et al. 2014), including the Persian Gulf (PG) 
and the Gulf of Oman (GO) (Shahdadi et al. 2014). Its 
cosmopolitan distribution seems to be largely related to 
anthropogenic activities, especially recently increased 
shipping traffic affecting transmission of larvae and 
adult barnacles globally (Seebens et al. 2013; Banks 
et al. 2015). This transmission causes changes in the 
genetic diversity of populations. The changes in genetic 
diversity can be investigated by various approaches 
including DNA barcoding.

DNA barcoding is a useful approach in uncovering 
genetic diversity, population structures and phylogenetic 
patterns (DeSalle and Goldstein 2019; Kim et al. 2019). 
This method can be used to reveal the genetic structure 
of non-indigenous species and their evolutionary 
potential and to assist with the management of 
introduced/invasive species (Strayer et al. 2006). Using 
the mitochondrial COI marker, Chen et al. (2014) 
investigated genetic differentiation in A. amphitrite in 
various regions of the world. They found three clades 
for the examined specimens including two widely 
distributed clades and one with only two representatives 
from North Carolina (USA) and Singapore (see Table 1 
in Chen et al. 2014). While most sampling sites hosted 
members of only one clade, some localities harbored 
members of two clades and had higher genetic diversity 
(see Fig. 1 and Table 1 in Chen et al. 2014). This 
sympatry was assigned to both historical events and 
recent human activities (Chen et al. 2014). However, a 
very important part of the species global distribution, 
the PG and the GO, were not included in their study.

The GO is the northwestern extension of the 
Arabian Sea (Indian Ocean) and expectedly shares 
common biota with that sea (Owfi et al. 2016). In 
contrast, the PG is a semi-closed and relatively young 
sea connected to the GO and Arabian Sea through the 
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Strait of Hormoz (Lambeck 1996). Until the early 
Holocene, the PG basin was almost dry (Sheppard 
et al. 2010). Its current marine community started to 
form only around 15 ka BP, receiving its biota from 

the northwestern part of the Indian Ocean (Teller et al. 
2000). The PG reached its current sea level about 6–8 
ka BP (Lambeck 1996). Currently, the PG is among the 
major destinations of oil tankers from all over the world 

Fig. 1.  Map of the sampling localities.

Table 1.  Sampling localities and summary of statistics of genetic variability for Amphibalanus amphitrite

# Location Latitude Longitude N Nh Np h π

1 Bushehr Province, Bandar Genaveh (GV) 29°33'17"N 50°29'08"E 3 - - - -
2 Hormozgan Province, Bandar Charak (BC) 26°43'32"N 54°16'51"E 2 - - - -
3 Qeshm Island, Toola and Hamoon harbors (TH)  26°55'01"N 55°56'13"E 15 11 17 0.9 0.0047
4 Qeshm Island, Messen and Kandaloo (MK) 26°41'53"N 55°54'49"E 14 10 22 0.89 0.0091
5 Hormozgan Province, Hormoz Island (HR) 27°02'33"N 56°29'38"E 2 - - - -

Persian Gulf (PG) (total) 36 24 46 0.93 0.0077
6 Hormozgan Province, Bandar Jask (JS) 25°42'18"N 57°47'07"E 10 7 8 0.87 0.0037
7 Sistan and Baluchestan Province, Jod (JD) 25°27'04"N 59°30'17"E 5 - - - -
8 Sistan and Baluchestan Province, Chabahar, Tis, Chabahar (CH) 25°21'12"N 60°36'08"E 30 19 25 0.89 0.0058
9 Sistan and Baluchestan Province, Gwatr Bay (GU) 25°10'34"N 61°36'14"E 13 6 35 0.92 0.0102

Gulf of Oman (GO) (total) 58 35 63 0.87 0.0066

N, sample size; Nh, number of haplotypes; Np, number of polymorphic sites; h, haplotype diversity; π, nucleotide diversity.
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with about 53,000 visits annually by oil transporting 
ships (Al-Yamani et al. 2015). Therefore, the present 
biota of the PG and its genetic composition are expected 
to reflect natural historic events as well as anthropogenic 
activities (Spalding et al. 2007). To test this hypothesis 
and to fill the void of knowledge pertaining to the PG 
and the GO, the present work aimed to study the genetic 
variation within the populations of A. amphitrite from 
these two gulfs using the mitochondrial COI gene. The 
study also investigated the genetic diversity within each 
Gulf and compared the diversity indices with those of 
other populations globally.

MATERIALS AND METHODS

Sample collection

Specimens of Amphibalanus amphitrite were 
collected from nine locations along the PG and the 
GO (Table 1, Fig. 1). In total, 94 individuals were 
collected from both artificial substrata (e.g., human-
made structures, piers, small vessel hulls and floating 
objects) and natural habitats (e.g., intertidal rocks, 
mollusk shells, crab carapaces and mangrove trunks). 
The specimens were kept in 96% or absolute ethanol 
immediately upon collection and transferred to the 
Molecular Systematics Laboratory at the University of 
Tehran for molecular analysis. 

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from muscles 
using the salt precipitation method (Katouzian et al. 
2016). A 576-bp fragment of the cytochrome c oxidase 
subunit I gene (COI) was amplified by the polymerase 
chain reaction using primer pairs LCO1490-JJ and 
HCO2198-JJ (Astrin and Stüben 2008) as described in 
Chen et al. (2014). The PCR products were outsourced 
for sequencing to LGC Genomics GmbH (Berlin, 
Germany) and Macrogen Europe, Amsterdam using 
the same forward primers. Sequences were proofread 
via Chromas Lite (v. 2.1.1) (Technelysium Pty Ltd, 
Queensland, Australia). Sequences of all unique 
haplotypes/genotypes were submitted to GenBank 
(http://www.ncbi.nlm.nih.gov) and are available under 
accession numbers (OQ119797–OQ119890). COI 
sequences of A. amphitrite from previous study (Chen 
et al. 2014) were also retrieved from GenBank and 
included in the analyses (accession numbers KC138445, 
KM211362–KM211497). Amphibalanus reticulatus, 
A. variegatus and Balanus glandula were used as 
outgroups (GenBank accession numbers JQ035518.1, 
JQ035522.1 and KU204282.1, respectively). 

Sequence data analyses

Sequences were al igned using Clustal  W 
(Thompson et al. 1994; Villesen 2007) implemented in 
BioEdit 7.0.5 (Hall 1999). The ML tree was obtained 
using raxmlGUI, v. 1.3 (Silvestro and Michalak 2012) 
with 1000 bootstrap pseudoreplicates. The selected 
evolutionary model was GTR+G (Rodriguez et al. 
1990). Two maximum parsimony haplotype networks 
(Templeton et al. 1992) were constructed with PopART 
(Leigh and Bryant 2015), one for clade I at the global 
level (Chen et al. 2014) taken from the tree, and one for 
the sequences of the present study. 

We calculated the distribution of pairwise 
differences (i.e., mismatch distribution; Rogers and 
Harpending 1992) to trace population size change in 
DnaSP v.5.10 (Librado and Rozas 2009). 

To assess how mtDNA effective population 
size changed through time, we analyzed historical 
demography using coalescent based Bayesian Skyline 
Plot (BSP) in BEAST 2.4.7 (Bouckaert et al. 2014). 
We selected GTR+G as the best model of nucleotide 
substitution and adopted a substitution rate of 3.1% per 
MY for COI (according to Tsang et al. 2008). We set 
a strict clock model as prior and ran three independent 
MCMC analyses with 60 million generations, sampling 
every 6,000 steps, to verify the consistency of the 
results. The initial 25% of the samples were discarded 
as burn-in. The convergence of all parameters was 
tested and BSP produced in Tracer 1.6 (Rambaut et al. 
2014).

Standard genetic indices were calculated to 
determine the genetic diversity within the species 
based on COI sequences. The haplotype diversity (h), 
nucleotide diversity (π), number of polymorphic sites 
(Np) and number of haplotypes (Nh) were calculated 
using DnaSP v.5 (Librado and Rozas 2009) for each 
local population and for the complete dataset of each 
Gulf. Overall mean p‐distance was analyzed with 
MEGA v.6 (Tamura et al. 2013). We computed pairwise 
ΦST with 1,000 permutations in Arlequin v.3.5.2.2 
(Excoffier and Lischer 2010) to investigate population 
differentiation patterns among local populations (only 
populations with n ≥ 8 were included).

Species distribution modelling

To construct the distribution modelling of A. 
amphitrite, we included localities of specimens of 
clade I and III used in worldwide phylogenetic analysis 
compiled from field observations and available data 
based on Chan et al. (2014). The ocean climate layers 
were downloaded from Bio-ORACLE (Ocean Rasters 
for Analysis of Climate and Environment) data set 
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(Tyberghein et al. 2012). Variables were selected based 
on their ecological meaningfulness and contribution 
rate species in distribution model. To avoid the effect 
of high correlation among layers, we first examined all 
layers using OpenModeller 1.0.7 (De Souza Muñoz 
et al. 2011) and then used the Pearson correlation 
method to obtain higher correlative layers (> 0.7). 
Layers with lower correlation (< 0.7) were selected 
for further analyses: Temperature (Mean and Range), 
Phytoplankton Mean, Salinity (Mean and Range), 
Current Velocity Mean, Min., Max., Ltmax, dissolved 
oxygen range and Phosphate Mean. All the data were 
downloaded as raster format with a 5-arc-minute from 
Bio-ORACLE data set (Tyberghein et al. 2012).

RESULTS

Five out of the nine sampling localities were 
located within the PG, and four were located in the 
GO (Fig. 1, Table 1). Here, we postulated two main 
populations, namely the PG and GO populations. 36 
specimens from the PG and 58 specimens from the GO 
were studied. Each of the 94 COI sequences contained 
approximately 576 base pairs (bp), and none of these 
contained a stop codon. In total, 53 polymorphic sites 
were found. 136 additional sequences of previous 
studies on the species were obtained from GenBank and 
included into the dataset for tree and haplotype network 
construction.

Sequence data analyses

In the ML tree, three distinct and well separated 
clades were recovered (Fig. 2). Sequences of the present 
study (green circles) are well distributed in the tree, 
with representatives in two clades. Most sequences were 
placed in clade I and only two specimens of the present 
study were significantly different from the others 
(Fig. 2) namely one from the PG (Kandaloo) and one 
from the GO (Gwatr) (Table 1). The phylogenetic tree 
showed 186 sequences, including 92 sequences of the 
present study placed in clade I. The haplotype network 
constructed for the clade I recovered 101 haplotypes, 
with 36 unique haplotypes for the PG and GO (Fig. 3). 

In the haplotype network (Fig. 4) of the Iranian 
samples (clade I), some haplotypes were present in 
only one of the two gulfs, while other haplotypes 
were found in both gulfs. Except for some outlying 
haplotypes, the network is nearly star-shaped and most 
of the haplotypes remained close to the main haplotype 
with only one mutation step. However, the haplotype 
network (Fig. 4) showed no clear patterns of isolation 
between specimens from the two gulfs.

The mismatch distributions showed a clear 
unimodal pattern in the populations of the PG and the 
GO. The distribution of pairwise haplotype differences 
was skewed to the left (Fig. 5).

An exponential growth in effective population 
size, shown in Bayesian Skyline Plots (Fig. 6), was 
consistent with the results of the mismatch distribution 
analysis. However, the BSP inferred slightly different 
timings of expansion from the mismatch analyses. The 
two populations shared a broadly similar timing of 
demographic growth, which began at 200 ka BP (Fig. 6). 
The number of sequences available for the GO produced 
a plot showing a tendency to demographic expansion, 
truncated at 200 ka BP.

Diversity indices were calculated for material 
from the sampling localities with 10 or more sequences, 
as well as for each gulf in total. The analyses showed 
that the specimens from both gulfs had high genetic 
diversity, and that the diversity within the PG was 
higher than the diversity within the GO (i.e., haplotype 
diversity in the PG = 0.93; the GO = 0.87). The 
individual sampling localities of both gulfs also showed 
high genetic diversity (Table 1).

The ΦST value was calculated only between 
populations with a sample size > 10 (Table 2). Most 
pairwise ΦST values between populations were small, 
and only two pairwise comparisons were significant 
(p < 0.05) (Table 2).

Species distribution modelling

All models were run in ten replicates for the 
current time. The potential distribution models of A. 
amphitrite showed perfect Area Under Curve (AUC) 
test values, with an index of 0.89 ± 0.03 and 0.96 ± 
0.03 for clade I and clade III, respectively. This showed 
significance for the binomial omission test, hence the 
maps were evaluated as very good (more than 0.850). 
The contribution performance of layers for each 
period is presented in table 3. Based on the results, 
temperature mean and range for clade I and temperature 
mean and current velocity min. for clade III made the 
largest contributions to current habitat suitability in the 
predictions modeling. Accordingly, the suitable habitats 
for A. amphitrite were the tropical and subtropical areas 
(Fig. 7). 

DISCUSSION

In the framework of biogeography, barnacles 
are among the most interesting invertebrates. During 
their pelagic larval stages, they are able to disperse 
under the influence of oceanic currents. By the end of 
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the larval phase and after dramatic changes through 
metamorphosis, they become sessile which is expected 
to limit their active distribution, gene flow among 
populations, and cause decreased genetic homogeneity. 
Their  foul ing behavior,  however,  has  great ly 

counteracted their natural dispersal ecology in recent 
decades (Holm 2012). It seems that ships have played a 
great role in their dispersal throughout the open waters 
(Yamaguchi et al. 2009). The fouling behavior increases 
gene flow among distant populations and therefore 

Fig. 2.  Phylogenetic tree constructed with Maximum Likelihood (ML) based on the COI gene for selected sequences of A. amphitrite, focusing on 
Iranian populations (green circles). Amphibalanus reticulatus (JQ035518.1), A. variegatus (JQ035522.1) and Balanus glandula (KU204282.1) were 
used as outgroups. Numbers show the bootstrap values after 1000 pseudo-replicates. Clades I, II and III are corresponding to those in Chen et al. (2014).
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Fig. 3.  Maximum-parsimony mitochondrial DNA haplotype networks for material from the PG and the GO, and the retrieved sequences from the 
GenBank (only sequences of the clade I in Chen et al. (2014) phylogenetic tree are included).

Fig. 4.  Maximum-parsimony of mitochondrial DNA haplotype networks for the PG and the GO populations constructed in PapArt. Hatch marks 
represent mutations; numbers in the figure legend refer to sampling sites in table 1 and figure 1.
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Fig. 5.  Frequency distribution of the number of pairwise nucleotide differences (mismatch) between COI haplotypes in the two populations of 
Amphibalanus amphitrite. The solid line shows the theoretical distribution under the model of demographic expansion.

Fig. 6.  Bayesian skyline plots of effective population size through time in Amphibalanus amphitrite from two biogeographical areas (A: PG and B: 
GO), based on the 576 bp sequences of COI and a nucleotide substitution rate of 3.1%/MY. The bold black curve is the median of the parameter NeT, 
which is proportional to the effective population size; the blue lines delimit the 95% highest posterior density. For comparison, all x-axes have the 
same scale. The plots are truncated to the median estimate of each area’s TMRCA.

page 8 of 17Zoological Studies 62:16 (2023)



© 2023 Academia Sinica, Taiwan

Table 2.  Pairwise estimates of COI genetic divergence 
(ΦST) for Amphibalanus amphitrite  among five 
biogeographical areas. The significance of ΦST values 
was tested by a permutation test with 1000 replicates

MK(PG) TH(PG) GU(GO) CH(GO) JS(GO)

MK(PG) 0
TH(PG) 0.00748 0
GU(GO) 0.00728 0.03051* 0
CH(GO) 0.03196* 0.00921 0.01027 0
JS(GO) 0.01838 0.00420 0.00528 0.02062 0

* p < 0.05.

Table 3.  The frequency of contribution of environmental 
variables in predicting the clades geographic distribution 
models

Environmental variable (unit) Clade I Clade III

Temperature Mean 39.8 56.8
Temperature Range 25.7 4.9
Phytoplankton Mean 15.3 5.9
Salinity Mean 5.5 1.4
Salinity Range 3.9 6.2
Current Velocity Mean 2.7 3.7
Current Velocity Ltmax 2 0
Dissolved oxygen Range 1.9 1.6
Phosphate Mean 1.6 5.3
Current Velocity Min 1 14.2
Current Velocity Max 0.6 0

Fig. 7.  MAXENT reconstruction for clade I (A) and clade III (B) of Amphibalanus amphitrite in the world representing current distribution models.
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homogenizes their genetic structure; this in turn makes 
it difficult to pinpoint the origin of their establishment 
(Ardura et al. 2016). One of the most common fouling 
barnacles is Amphibalanus amphitrite, an important 
species not only in marine ecology but also in the global 
economy (Holm 2012). 

Using the mitochondrial COI marker, Chen 
et al. (2014) studied global phylogeography of this 
species with material from 25 localities. They found 
three distinct morphologically similar clades (with a 
4% divergence between clades) indicating historical 
isolation between populations or possibly a cryptic 
species complex. These include clade I, as the most 
common and globally distributed clade along tropics 
and warm temperate areas, clade II with only two 
sequences, one from Singapore and one from North 
Carolina (USA) and clade III with more representatives, 
but restricted to the Indo-West Pacific tropics. It is 
commonly stated that the native range of A. amphitrite 
is the Indo-West Pacific (Jones et al. 2000; Shahdadi 
et al. 2014). This is a huge water body with high 
diversity that is occupied by all three clades. However, 
centuries of hitchhiking with human-mediated vectors 
or corridors has made it difficult to determine the 
autochthonous population distribution throughout the 
Indo-West Pacific region (Carlton 2011). The study of 
Chen et al. (2014) also included two localities in the 
northwest of the Indian Ocean, namely Mumbai (East 
of India) and Saudi Arabia (the Red Sea), which were 
dominated by representatives of clade I, with only one 
sequence of clade III in Mumbai.

In the previous studies, no specimens from 
the Persian Gulf (PG), a major commercial and oil 
transportation destination, were investigated. In the 
present study, in addition to the sequences of the 
specimens collected from the PG and the GO, the 
sequences reported in Chen et al. (2014) were included 
in the phylogenetic analyses. The distribution pattern 
of the PG and the GO samples was similar to that 
previously reported for samples from the east of India 
(Mumbai in Chen et al. 2014); most specimens were 
placed in clade I and only one sequence from each 
gulf was placed in clade III (Fig. 2). Clade I specimens 
included barnacles from Japan to Malaysia and also 
from Australia, India, Saudi Arabia, Hawaii, California 
and North Carolina (Chen et al. 2014). Within clade I, 
the PG and the GO samples clustered with sequences 
from Australia, West India, Taiwan, Hong Kong, 
Vietnam, Salton Sea (USA) and Singapore.

Clade III was only present in tropical Indo-West 
Pacific waters (Chen et al. 2014). In the phylogenetic 
tree (Fig. 2), only two specimens from current study 
showed great affinity with clade III together with 
sequences from Australia, Taiwan, Hong Kong 

and Singapore. This clade had limited distribution 
compared to clade I. In the case of a complex species, 
it is expected to have one species or subspecies with 
a cosmopolitan distribution and other specimens 
restricted to specific areas (Chan et al. 2007; Zhan et 
al. 2010; Keshavmurthy et al. 2013). We demonstrated 
that this clade is mostly distributed and mapped on 
the shipping routes. The results of the current study 
clearly confirm that anthropological, mainly shipping 
activities, are the most likely explanations for the 
present global distribution of A. amphitrite. This 
information is expected to help shipping policy makers 
in the designing of effective measures for protection of 
ships as well as in the maintenance of the biodiversity 
of barnacles (Carlton et al. 2011; IMO 2021).

The spread of  A.  amphi tr i te  may appear 
unidirectional toward the PG depending upon vectors, 
local hydrographic conditions and exploration history of 
larval stages. The vectors are important in transferring 
this species especially to the regions with high shipping 
traffic such as the PG and the GO. The PG produces 
around 46% of the world’s oil consumption, and more 
than 90% of this oil is transported annually in thousands 
of oil tankers (Haapkylai et al. 2007; Al-Yamani et al. 
2015). 

The dispersal pattern of barnacle larvae and 
consequently the distribution range of the adults, 
are expected to reflect the interaction of larvae with 
oceanographic currents (Keith et al. 2011; Tsang et al. 
2012). The spatial structure of a species may mirror 
the major oceanographic systems and environmental 
conditions. Additionally, the Indian Ocean tsunami off 
the west coast of northern Sumatra, Indonesia in 2004 
(Lay et al. 2005; Okal et al. 2006) and, the Pangandaran 
tsunami off the west and central coast of Java, an island 
in the Indonesian archipelago in 2006 (Fritz et al. 2007), 
affected major parts of the Indian Ocean. This resulted 
in the transport of vast bulks of water within only a few 
days to different parts of the Indian Ocean including the 
GO and the PG.

The currents of the PG and the GO are also 
anticipated to play important roles in determining the 
present dispersal pattern of A. amphitrite (Ghanbarifardi 
et al. 2018; Sepahvand et al. 2021). For example, the 
anticlockwise currents that circulate from the GO to 
the PG (Yao 2008; Thoppil and Hogan 2010) most 
likely facilitate the transfer of the species’ larvae (larval 
duration 7–17 days in 20–26°C) in the planktonic 
stages (Costlow and Bookhout 1958). These passive 
transports will spread individuals of A. Amphitrite to 
the PG through different means, namely, natural larval 
distribution, transport and release of larvae by ballast 
water or carrying ovigerous barnacles on ship hull to 
new regions. 
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Temporal patterns of introduction of A. amphitrite 
to the PG and the GO should take into account dates 
of first records. The increased diversity of barnacle 
invasions in the last half of the twentieth century is in 
close synchronization with general global observations 
of increasing invasions of marine invertebrates, fish, 
and algae after World War II associated with vastly 
expanded global trade facilitated by more, larger, and 
faster ships. For example, A. amphitrite together with 
A. improvisus were the first barnacles introduced to 
Americas for the first 100 years of invasion history 
at 1853–1955 (Carlton et al. 2011). In California, the 
first record of A. amphitrite is in 1914 (Henry and 
McLaughlin 1975).

The first record of A. amphitrite from the PG was 
given by Nilsson-Cantell (1938) as Balanus amphitrite 
hawaiiensis from an unknown locality and then by 
Stubbings (1961) as B. amphitrite var. communis, and B. 
amphitrite var. hawaiiensis, from Kuwait; by Utinomi 
(1969) as B. amphitrite from Hormoz Island; and by 
Jones (1986) as B. amphitrite var. communis from 
Kuwait. A recent checklist of Iran barnacles recorded A. 
amphitrite from all over the coasts of Iran (Shahdadi et 
al. 2014). Introduction of this species to the PG and the 
GO fell within a well-known global pulse of invasions 
related to an earlier surge of shipping, particularly in 
special economic zones. This widespread distribution is 
more related to clade I. Comparatively, clade III from 
the Indo-West Pacific has not expanded geographically. 
This distribution pattern reveals the major role of 
human-mediated vectors and corridors in introduction 
and dispersion of barnacles.

Present results revealed high levels of genetic 
diversity in the mitochondrial marker COI in the PG (h 
= 0.9) and the GO populations (h = 0.8). These values 
are also notable when compared to the population of 
several other invertebrate species in the PG and the GO, 
such as the fiddler crab Uca sindensis (h = 0.63; Shih et 
al. 2015), Jinga shrimp Metapenaeus affinis (h = 0.0–
0.33; Tamadoni-Jahromi et al. 2016) and pearl oyster 
Pinctada radiata (h = 0.0–0.47; Al-Saadi 2013). 

Some other barnacle species from other parts of 
the world also demonstrated similar levels of genetic 
diversity in COI such as Amphibalanus improvisus (h = 
0.75–0.96; Wrange et al. 2016), Chthamalus proteus 
(h = 0.9–1; Zardus and Hadfield 2005) and Tetraclita 
serrata (h = 0.9; Reynold et al. 2014).

The PG is a geologically young, semi-enclosed 
basin with a harsh environment, including high 
temperature and salinity. These extreme indices 
are believed to be largely responsible for the lower 
biodiversity of the PG (Naderloo 2017). The conditions 
of the PG may allow a recent selective sweep for 
fixation of particular haplotype. In contrast, according to 

Shahdadi et al. (2014), the number of barnacle species 
in the PG is 33, which compares to 26 species in the 
GO. The A. amphitrite populations from two gulfs share 
several haplotypes including the most common one. The 
genetic diversity in the PG population is higher than the 
diversity of the GO and many other previously studied 
populations from around the world (see Table 1 in Chen 
et al. 2014).

Owing to the young age of the PG, the  A. 
amphitrite population seems to have been introduced 
to this region naturally. This establishment was before 
species discovery by Darwin (1854). Its transport into 
the gulfs by ships occurred later. Therefore, according 
to common hypothesis, this population is expected 
to present low genetic diversity compared to native 
population. Our data revealed high genetic diversity 
among the PG barnacles. This is indicative of multiple 
episodes of introduction of barnacles to the PG from 
different sources (such as traditional Indian and Chinese 
shipping, tsunamis, tropical cyclones, and earthquake 
induced waves).

The high genetic diversity within the PG 
population and presence of common haplotypes among 
the PG and other populations of the world are therefore 
likely to be partially resulted from the anthropogenic 
introduction of haplotypes from around the world. The 
same reason could justify the high genetic diversity 
in some previously studied areas like Singapore and 
Hong Kong (see Chen et al. 2014). This could be well 
explained by the fact that ships from all over the world 
travel to these waters, stay in harbors for some time 
and subsequently transfer barnacles with different 
haplotypes from multiple sources to this area, providing 
their larvae with enough time for settlement and 
permanent sessile life in the region. 

In this case, A. amphitrite has experienced multiple 
modes of dispersal including transportation of barnacle 
larvae by currents and ballast water and transportation 
of adults on ships hulls as fouling organisms to other 
parts of the globe. This could explain the presence 
of some of these newcomer haplotypes that are very 
distinct from the local haplotypes. However, intensive 
human-mediated gene flow has probably counteracted 
these processes. The result of all has been colonization 
of new areas at different scales and the presence of the 
dominant species on most coasts in the PG and the GO 
(Shahdadi et al. 2014; Shabani et al. 2019; Al-Khayat et 
al. 2021). Transport has been mediated via most natural 
and anthropogenic substrates including floating marine 
debris of various types and surface texture. For example, 
plastics have been common and pervasive anthropogenic 
debris in marine environments (Rech et al. 2018) and 
as floating objects they provide opportunities to alter 
the abundance, distribution and invasion potential 
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of this species for effective colonization (Goldstein 
et al. 2014). These transport opportunities may have 
been the key elements for successful distribution of 
this species. The knowledge about different types of 
dispersal dynamics of non-native species is crucial 
to our understanding of both evolutionary aspects of 
colonization as well as future management of biological 
introductions and invasions.  Human-mediated dispersal 
has increased transmission of haplotypes from all over 
the world to these regions. This has caused increased 
genetic diversity within populations. On the other hand, 
with increasing gene flow, genetic differentiation has 
decreased as evidenced by genetic divergence (ΦST) 
between sampling sites that generally do not exceed 
3% (Table 2). The values suggest high gene flow and 
absence of or weak genetic subdivision between the 
populations of the biogeographical areas (see Guo and 
Wares 2017). 

The smaller values of ΦST observed in the present 
study may derive from higher gene flow between 
individuals of A. amphitrite from different localities. 
The real distribution and connectivity of intertidal 
animals in the region and closely related areas (i.e., 
West Indian Ocean) are evidently determined by 
oceanographic regimes, environmental conditions and 
historical events (Tsang et al. 2012; Afkhami et al. 
2016; Rahimi et al. 2016; Ghanbarifardi et al. 2018).

The unimodal right skewed mismatch distribution 
curves (Fig. 5) confirm the recent population expansion 
for individuals collected both from the PG and the GO. 
The Bayesian Skyline Plot analysis (BSP) displayed the 
demographic expansion curve for the populations of the 
PG and the GO areas with truncation possibly due to the 
smaller sample size (Fig. 6). Despite more truncation 
for the GO, the curve shape was consistent with that 
of the PG. The results uncovered that the demographic 
expansion of A. amphitrite in the PG and the GO areas 
started approximately before 200 ka BP (Fig 6). This 
dating could not be in accordance with the history of 
the PG, which appeared about 18 ka years ago, and the 
fact that just about 8–10 ka BP, the northeastern margin 
of the PG approached its present position in several 
localities (Lambeck 1996; Marko et al. 2010). Thus, the 
expansion time of A. amphitrite in the PG and the GO 
had likely been at the early Holocene, concurrent with 
the re-flooding of the PG. This historical data seems to 
be related to gene flow in the Indian Ocean prior to the 
appearance of the PG. Consequently, it is not possible to 
precisely define the beginning of population expansion 
for this area. However, it is plausible that human factors 
played a role in introducing haplotypes to this region in 
recent decade. 

Distribution modelling maps showed the presence 
of potential localities for geographical distributions 

of two clades based on natural environment factors. 
From this perspective, both clades are common in the 
China Sea, Northern Australia especially the Gulf of 
Carpentaria, PG, GO, the Red Sea, West African coastal 
areas, the east coast of the United States and the western 
coasts of Mexico. These are potential distribution 
locations for both clades, but clade III in the Indo-
Pacific Ocean presents a noticeably broader distribution. 
With ever growing human intervention (Seebens et 
al. 2013), we can expect changes in distribution of A. 
amphitrite clades in the future. 

The shape of the population genetic structure of 
marine invertebrate species, in addition to historical 
demography and selection regimes, is affected by 
environmental factors (Bohonak 1999; O’Riordan et 
al. 2004). According to previous records, A. amphitrite 
is widely distributed globally around tropical and 
subtropical coasts (Henry and McLaughlin 1975; Chen 
et al. 2014). In the present study, distribution modelling 
showed the importance of environmental factors such 
as temperature, phytoplankton availability and salinity 
in the distribution of this species. Distribution of the 
fouling species is related to fouling type. The extent of 
fouling on ships’ hulls depended on many factors, e.g., 
water salinity, light, temperature, pollution, geographical 
location and nutrient availability (Pettengill et al. 2007; 
Hulme 2009). Based on studies on invasions in marine 
environments (Gallardo et al. 2015), the distribution 
of invasive species is influenced by nutrients (40%), 
temperature (26%), human footprint (21%) and other 
factors (13%) that support a relevant role of the match 
between physicochemical characteristics of the donor 
and receiving waters for species introductions (Seebens 
et al. 2013). It seems that temperature plays the most 
important role in species distribution, specifically in 
tropical or subtropical waters. The polar zones are 
subjected to the most severe fouling attack, particularly 
in more shallow, coastal waters where there is greater 
abundance of light, heat and nutrients, resulting in 
prolific reproduction of the fouling species (Ubagan 
et al. 2021). One of the important factors in future 
distribution of A. amphitrite is climatic warming 
scenarios (Carlton 2000). The southward spread of A. 
amphitrite from Brazil to Argentina is a remarkable 
example (Carlton et al. 2011), and therefore, distribution 
maps of modelling can help to understand the role of 
potential climatic changes on expansion (Howard 1997; 
Poloczanska et al. 2008; Southward 1991).

The species displays several life history traits 
including broad environmental tolerance such as with 
temperature (Qiu and Qian 1999; Piazza et al. 2016). 
In their study, Khosravi et al. (2019) suggested that 
during global warming, A. amphitrite has maximum 
biofouling coverage in the PG and overtakes more 
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rivals. Furthermore, this species can survive in the 
high salinity of the PG (Simpson and Hurlbert 1998) 
better than the closely related mesohaline barnacle, A. 
improvises. The latter species is often restricted to low 
salinity environments and does not show a structured 
population genetic pattern globally (Wrange et al. 2016). 
However, A. amphitrite has displayed three clades with 
potentially different physiological properties which 
display distribution restrictions (Chan et al. 2014). This 
tolerance ability has granted A. amphitrite a competitive 
advantage over rivals.  Remarkably, Bishop (1947) 
reported that three species of live barnacles, including 
A. amphitrite, arrived in Liverpool, England, after a 30-
days voyage from Australasia, via the Panama Canal.

CONCLUSIONS

Molecular phylogeny of the common fouling 
barnacle, A. amphitrite, recovered three distinct clades 
using the mitochondrial COI marker. In the present 
study, specimens of the PG and the GO were placed 
into two different clades. Most specimens clustered in 
one clade which is mainly distributed globally, and two 
sequences fell in a separate clade. Genetic diversity of A. 
amphitrite revealed high genetic diversity in the PG and 
the GO populations and also the presence of common 
haplotypes of other regions of the world, indicating high 
gene flow between populations via shipping and other 
anthropogenic activities. Despite the young age of the 
PG, there are several unique haplotypes including 13 in 
the PG and 20 in the GO.

The contribution of anthropological activities 
to the transportation of this species into the PG and 
the GO seem evident. The implications of the broad 
environmental tolerance and high dispersal capacity of 
A. amphitrite for its ability to adapt to local conditions 
and tolerate future environmental changes remain to be 
elucidated. 

Global homogenization of biota is underway 
through worldwide introduction and establishment of 
non-indigenous (exotic) species. The fouling organisms 
on ship hulls are continuously in transit and can affect 
communities through biodiversity loss and serious 
damage to economy and public health.

Through continuous human interference in the 
transportation of marine species, particularly through 
intense global shipping, it seems a high admixture 
between populations of A. amphitrite in the PG and 
the GO has occurred. Hence, A. amphitrite’s genetic 
structure determination has systematically vital 
importance for discovering species invasions and 
planning for the future control of species introduced via 
ship.

Naturally, even widely dispersed animals such as 
planktons can show significant population differences 
at macro-geographical scales (Barber et al. 2002), 
indicating geographical distributional constraints. 
However, human intervention interferes with the 
separation of the clade boundaries. Therefore, it is 
difficult to predict what the distribution composition of 
this species will be in the future. The distribution maps 
(using modelling) will help to model future patterns for 
better control and management of fouling organisms 
such as barnacles.
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