Chromosomal Study on Selected Small Araneomorph Spiders from Brazil, Including the First Records in Palpimanidae and Theridiosomatidae (Araneae, Araneomorphae)

Débora Duarte Dutra¹, Antônio Domingos Brescovit², and Douglas Araujo¹,*

¹Laboratório de Citotaxonomia e Evolução Cromossômica Animal, Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva, s/n, Campo Grande, Mato Grosso do Sul, Brazil, Caixa Postal 549, CEP 79070-900. Correspondence: E-mail: d.araujo@ufms.br (Araujo)
E-mail: deborad.dutra98@gmail.com (Dutra)

²Laboratório de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, São Paulo, Brazil, CEP 05503-900. E-mail: antonio.brescovit@butantan.gov.br (Brescovit)

Received 24 November 2022 / Accepted 19 June 2023 / Published 11 August 2023

Among the 50,474 spider species, only 849 have chromosomal data available in the literature. Fifty spider families remain unknown from a cytogenetic perspective. The aim of this study was to analyze chromosomally selected araneomorph spiders from Brazil, to contribute to the cytotaxonomy and chromosome evolution of this group. The karyotypes of 12 species belonging to families Corinnidae, Linyphiidae, Oonopidae, Palpimanidae, Theridiidae, Theridiosomatidae, Trachelidae, and Zodariidae were analyzed, including the first chromosomal record for the first two families. Specimens (with the abdomen content partially exposed by perforation) were subjected to colchicine, hypotonization, and fixation. In most cases, the total content of the abdomen was used to prepare slides by spreading of cell suspension and subsequent Giemsa staining. The results were as follows:

- *Cinetomorpha simplex* Simon, 1892 (Oonopidae) 2n = 9, X0;
- *Neotrops* sp. and *Neoxyphinus termophilus* (Oonopidae), 2n = 7, X0; *Oloiothops birabeni* (Palpimanidae);
- *Agyneta* sp. (Linyphiidae), 2n = 24, X1X20;
- *Coleosoma floridanum*, *Thymoites* sp.1 and *Thymoites* sp.2 (Theridiidae), 2n = 22, X1X60;
- *Naatlo* sp. (Theridiosomatidae), 2n = 30, X1X60; *Orthobula* sp. (Trachelidae) 2n = 21, X0;
- *Falconina* sp. (Corinnidae), 2n = 28, X1X60;
- *Epicratinus* sp. (Zodariidae) 2n = 42, X1X60.

The chromosomal morphology was determined for all the samples except for Oonopidae. Most species exhibited telocentric chromosomes, with the exception of Palpimanidae and Theridiosomatidae. The main findings: 1) support an hypothesis on ancestral karyotype of Zodariidae and Oonopidae; 2) reveal a relatively high chromosome number in Palpimanidae that supports an idea on relatively high ancestral chromosome number (2n = 42) of entelegyne spiders (Palpimanoidea is sister group of entelegyne spiders); 3) show that the karyotype found in Theridiosomatidae is exceptional within the Araneoidea.

Key words: Mitosis, Meiosis, Diploid number, Sex chromosome system
including families of spiders with small body sizes, which are often neglected because of the difficulties in collecting, disseciting, and obtaining chromosome plates. Chromosomal studies of leaf litter spiders are also rare due to specific methodology, which is required for their collection. Many spiders from this environment are tiny, difficult to determine with the naked eye (Indicatti and Villarreal 2016).

In the present study, we analyzed species of spiders that are less than one centimeter in body length. Twelve species were evaluated, four of which belonged to families with exclusively minute species (Oonopidae and Theridiidae) and eight belonged to families that also included larger species (Corinnidae, Linyphiidae, Palpimanidae, Theridiidae, Trachelidae, and Zodariidae). Most of these families are not closely related (Wheeler et al. 2017). Cytogenetic studies on most of these families are rare or do not exist. We recorded the first karyotype data for Palpimanidae and Theridiomatidae and documented the first karyotype data for all other studied genera to fill gaps and expand the data for analysis of cytotaxonomy and karyotype evolution in araneomorph spiders.

MATERIALS AND METHODS

The specimens of Naalto sp. (Theridiomatidae) were collected over night. The remaining specimens were obtained during the day or night through litter sieving, according to Coddington et al. (1991), with some modifications. After the exclusion of leaves and larger particles with the aid of a metallic sieve with a mesh of 1 cm, the material was slowly spread in a plastic tray, and individuals were searched by tossing a mesh of 1 cm, the material was slowly spread in a plastic tray, and individuals were searched by tossing

© 2023 Academia Sinica, Taiwan
Table 1. Collection site, numbers of specimens (males and females), number of analyzed cells, diploid number, and sex chromosome system (SCS) in species analyzed

<table>
<thead>
<tr>
<th>Family/Higher classification</th>
<th>Species</th>
<th>Collection site</th>
<th>Specimens</th>
<th>Analyzed cells</th>
<th>Diploid number</th>
<th>SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oonopidae (Dysderoidea)</td>
<td>Cinetomorpha simplex</td>
<td></td>
<td>1</td>
<td>2 δ /1 φ</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Neotrops sp.</td>
<td></td>
<td>3</td>
<td>2 δ /1 φ</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Neoxyphinus termiformis</td>
<td></td>
<td>1</td>
<td>1 δ /1 φ</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Otiothops birabeni</td>
<td></td>
<td>3</td>
<td>1 φ</td>
<td>3</td>
<td>36 (δ)</td>
</tr>
<tr>
<td>Palpimanidae (Palpinanoidea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linyphiidae (Entelegynae, Araneoidea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therididae (Entelegynae, Araneoidea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theridiosomatidae (Entelegynae, Araneoidea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachelidae (Entelegynae, Clade RTA, Dionycha A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthobula sp.</td>
<td></td>
<td></td>
<td>1</td>
<td>1 δ /1 φ</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Naatlo sp.</td>
<td></td>
<td></td>
<td>2</td>
<td>3 δ</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Corinnidae (Entelegynae, Clade RTA, Dionycha B)</td>
<td></td>
<td></td>
<td>2</td>
<td>3 δ</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Zodariidae (Entelegynae, Clade RTA, Zodarioidea)</td>
<td></td>
<td></td>
<td>3</td>
<td>2 δ /1 φ</td>
<td>36</td>
<td>42</td>
</tr>
</tbody>
</table>

the morphology, 2) metaphase II, which could help to determine chromosome morphology, was not found, and 3) our analyzes included colchicine, which reduced the number of cells showing segregation behavior during mitotic anaphase.

Palpimanidae (Palpimanoidea)

Oogonial metaphases of *Otiothops birabeni* consist of 36 chromosomes. The morphology of particular chromosome pairs was not determined, but the karyotype includes metacentric, submetacentric, subtelo-centric, and telocentric elements (Fig. 2). It was impossible to determine the sex chromosome system (SCS) because males were not found.

Entelegynae, Araneoidea

Linyphiidae

Analysis of the spermatogonial and oogonial metaphases of *Agyneta* sp. revealed $2n \delta = 24$ and $2n \varphi = 26$, respectively. Chromosomes were exclusively telocentric (Fig. 3A–B). Spermatocytes I showed 11 autosomal bivalents and two sexual univalents (X_1X_2) in early diplotene. Sex chromosomes formed a positively heteropycnotic mass (Fig. 3C). In late diplotene and metaphase I, it was possible to observe 11 autosomal bivalents (the majority with only one chiasma) and two separated sex chromosome univalents (Fig. 3D), which allowed to determine the male karyotype of the species as $2n \delta = 24 (22+X_1X_20)$.

Theridiidae

Analysis of mitotic metaphases revealed $2n \delta = 22$ in *Colesosma floridanum* and *Thymoites* sp.1 (Fig. 3E, H) and $2n \varphi = 24$ in *C. floridanum*, *Thymoites* sp.1, and *Thymoites* sp.2 (Fig. 3F, I, K). Plates were composed exclusively by telocentric chromosomes (Fig. 3E–F, H–I, K). In these three species, spermatocytes I showed 10 autosomal bivalents and two sex chromosome univalents (X_1X_2) in diplotene and metaphase I. The bivalents showed only one chiasma (Fig. 3G, J), except for the early diplotenes, which showed some bivalents with two chiasmata (Fig. 3L). The sex chromosome univalents were placed close to each other (Fig. 3G) or side-by-side and showed positive heteropycnosis (Fig. 3J, L), depending on the stage of diplotene/metaphase I. Based on analyzed plates, we determined the karyotype formulas of these species as $2n \delta = 22 (20+X_1X_20)$ and $2n \varphi = 24 (20+X_1X_20+X_1X_20)$.

Theridiosomatidae

Male mitotic metaphases consisted of 30 chromosomes (Fig. 3M). Spermatocytes I in diplotene and metaphase I contained 14 autosomal bivalents and two X chromosome univalents (X_1X_2) (Fig. 3N). We found two types of metaphases II of spermatocytes II, one with $n = 14$ and another one with $n = 16 (14+X_1X_2)$ (Fig. 3O–P). In some diplotenes and metaphases II, the sex chromosomes were positively heteropyknictic. Thus, the karyotype formula of *Naatlo* sp. was $2n \delta = 30 (28+X_1X_20)$. Despite many chromosome overlaps in mitotic metaphases, which did not allow detailed analysis of chromosome morphology, the observation of mitotic plates and metaphases II indicated that all or almost all the chromosomes were biarmed (meta/submeta/subtelocentric) (Fig. 3O–P).

Entelegynae, RTA clade

Dionycha part A

Trachelidae

Analysis of mitotic metaphases of *Orthobula* sp. revealed $2n \delta = 21$ and $2n \varphi = 22$ chromosomes, which exhibited telocentric morphology (Fig. 4A–B). Diplotene of spermatocytes I showed 10 autosomal bivalents with one or two chiasmata and a positively heteropycnotic univalent X (Fig. 4C). Thus, the karyotype was $2n \delta = 21 (20+X0)$ and $2n \varphi = 22 (20+X, X, X, X)$.
of the complement (Fig. 4A–B), corresponding to approximately 7% of the total chromosome length of diploid karyotype in males.

Dionycha part B

Corinnidae

Spermatogonial metaphases of *Falconina* sp. showed 28 telocentric chromosomes (Fig. 4D). Spermatocytes I showed 13 autosomal bivalents and

Fig. 3. Chromosomes of Linyphiidae (A–D), Theridiidae (E–L) and Theridiosomatidae (Aranoeoidae). *Agyneta* sp. (A–D), *Coleosoma floridanum* (E–G), *Thymoites* sp.1 (H–J), *Thymoites* sp.2 (K–L) and *Naatlo* sp. (M–P): A: Mitotic spermatogonial metaphase composed of 24 telocentric chromosomes. B: Mitotic oogonial metaphase with 26 telocentric chromosomes. C: Spermatocyte I (early diplotene) with 11 autosomal bivalents and two positively heteropycnotic sex chromosome univalents arranged in parallel (11II+X1X2). D: Spermatocyte I (metaphase I) with 11 autosomal bivalents and two sex chromosome univalents (11II+X1X2). E, H: Mitotic spermatogonial metaphase, 2n = 22 telocentric chromosomes. F, I, K: Mitotic oogonial metaphases, 2n = 24 telocentric chromosomes. G, J, L: Spermatocyte I, metaphase I (G, J) and early diplotene (L) consisting of 10 autosomal bivalents and two sex chromosome univalents (10II+X1X2). Sex chromosomes are positively heteropycnotic at J and L. While they are associated at G, they pair in parallel in J. Mode of pairing is unclear at L. M: Mitotic spermatogonial metaphase, 2n = 30. N: Spermatocyte I, metaphase I. Note 14 autosomal bivalents and two sex chromosome univalents (14II+X1X2). O: Metaphase II, n = 14. P: Metaphase II, n = 16 (14+X1X2). Sex chromosomes are positively heteropycnotic. Arrowhead = bivalent with two chiasmata. Scale bars = 5 µm.
two sex chromosome univalents \((X_1X_2)\) in pachytene, diplotene, and metaphase I (Fig. 4E–F), with one chiasma per bivalent, except for two or three bivalents with two chiasmata in late prophase I (Fig. 4F). We found two types of metaphases II, namely with \(n = 13\) and \(n = 15\) chromosomes \((13+X_1X_2)\) (Fig. 4G–H). The sex chromosomes were positively heteropyknotic in pachytene, diplotene, and metaphases II. Based on these data, karyotype was determined as \(2n \delta = 28\) \((26+X_1X_2)\).

Zodarioidea

Zodariidae

The oogonial metaphases of *Epicratinus* sp. were composed of 44 chromosomes (Fig. 4I). All chromosomes were telocentric, with the exception of the second largest pair, which was subtelocentric and corresponded to the \(X_1\) chromosomes. These elements show the same morphology at male prophase I (Fig. 4I–J). Diplotene of spermatocytes I consisted of 20 autosomal bivalents and two sex chromosome univalents \((X_1X_2)\). Bivalents exhibited one chiasma, except for two bivalents with two chiasmata. Subtelocentric \(X_1\) is larger than \(X_2\) (Fig. 4J). We found two types of metaphases II in spermatocytes II, one with \(n = 20\) and another one with \(n = 22\) chromosomes \((20+X_1X_2)\) (Fig. 4K–L). Based on these data, karyotype was determined as \(2n \gamma = 42\) \((40+X_1X_2)\) and \(2n \gamma = 44\) \((40+X_1X_2X_2)\).

DISCUSSION

Oonopidae (Synspermiata, Dysderoidea)

Fig. 4. Chromosomes of Corinnidae, Trachelidae, and Zodariidae (RTA Clade). *Falconina* sp. (Corinnidae) (A–E), *Orthobula* sp. (Trachelidae) (F–H) and *Epicratinus* sp. (Zodariidae) (I–L): A: Mitotic spermatogonial metaphase, \(2n \delta = 28\) telocentric chromosomes. B: Pachytene, \(13II+X_1X_2\). Sex chromosomes pair in parallel; they are positively heteropyknotic. C: Spermatocyte I, diplotene. Note 13 autosomal bivalents and two sex chromosome univalents \((13II+X_1X_2)\). Sex chromosomes pair in parallel on the periphery of the plate. D: Metaphase II, \(n = 13\) telocentric chromosomes. E. Metaphase II, \(n = 15\) \((13+X_1X_2)\), telocentric chromosomes. Sex chromosomes are associated and positively heteropyknotic. F: Mitotic spermatogonial metaphase, \(2n \delta = 21\). G: Mitotic oogonial metaphase, \(2n \gamma = 22\) telocentric chromosomes. H: Spermatocyte I, diplotene consisting of 10 autosomal bivalents and a sex chromosome univalent \((10II+X)\). Sex chromosome is positively heteropyknotic. I: Mitotic oogonial metaphase, \(2n \gamma = 44\) telocentric chromosomes, except for the subtelocentric \(X_1\). J: Spermatocyte I, diplotene composed of 20 autosomal bivalents and two sex chromosome univalents \((20II+X_1X_2)\). Sex chromosomes are associated in parallel. K: Metaphase II, \(n = 20\) telocentric chromosomes. L. Metaphase II, \(n = 22\) \((20+X_1X_2)\). Arrowhead = bivalent with two chiasmata. Scale bars = 5 µm.
Chromosomal data has been published only for the two first time. Its position within the superfamily Araneoidea was also chromosomally analyzed for the family (23 of 32 karyotyped species) (Araujo et al. 2022), including the sister group of Araneidae, whose male diploid numbers range from 13 to 50, with 2n δ = 24 being more frequent (52 species of 66 karyotyped). The diploid number found in Naatlo sp. (2n δ = 30, X, X, 0) was not found in the last two families, as well as in any Araneoidea so far (Araujo et al. 2022).

Another peculiarity of Naatlo sp. is the exclusively or almost exclusively biarmed karyotype. Among Araneoidea species that have been karyotyped, only seven species of Araneidae show the same pattern. In some cases, this change in morphology was accompanied by a considerable reduction in the diploid number (2n δ = 14) (Hackman 1948; Suzuki 1951; Amalin et al. 1993), whereas in others, the diploid number 2n δ = 24 has been retained (Carandang and Barrion 1994) or slightly increased to 2n δ = 26 (Prakash and Prakash 2014).

Palpimanidae

To date, there are no chromosomal studies on the Palpimanoida clade (Araujo et al. 2022). According to Wood et al. (2012 2013) and Dimitrov et al. (2017), Palpimanoida is a sister group of Entelegynae. The relatively high chromosome number found in O. birabeni (Palpimanidae) (2n = 36) is consistent with the relatively high diploid number (2n δ = 42) of the ancestral Entelegynae karyotype proposed by Král et al. (2006).

Linyphiidae, Theridiidae and Theridiosomatidae (Entelegynae, Araneoidea)

Agyneta sp. (2n δ = 24, X, X, 0, telocentric) is the first Neotropical member of Linyphiidae to be karyotyped. However, it shows the same pattern as most karyotyped species of the family (10 of 15 species karyotyped) (Araujo et al. 2022), including the sister genus Helophora Menge, 1866. Species with different karyotype compositions (Araujo et al. 2022) have been found in genera which are not closely related to Agyneta (Arnedo et al. 2009; Wang et al. 2015).

The karyotype found in the three species of Theridiidae analyzed (C. floridanum, Thymoites sp.1, Thymoites sp.2, subfamily Theridiinae) (2n δ = 22, X, X, 0, telocentric chromosomes) is the most common for the family (23 of 32 karyotyped species) (Araujo et al. 2022), and it is also found in Theridion Walckenaer, 1805, a notoriously problematic and non-monophyletic genus that includes species phylogenetically close to those studied here (Agnarsson 2004; Liu et al. 2016).

The Theridiosomatidae family (Entelegynae, Araneoidea) was also chromosomally analyzed for the first time. Its position within the superfamily Araneoidea is controversial (Griswold et al. 1998; Dimitrov et al. 2017; Wheeler et al. 2017; Fernandez et al. 2018). Chromosomal data has been published only for the two families proposed as sister groups, namely Synotaxidae (1 species, 2n δ = 24, XY) and Araneidae, whose male diploid numbers range from 13 to 50, with 2n δ = 24 being more frequent (52 species of 66 karyotyped). The diploid number found in Naatlo sp. (2n δ = 30, X, X, 0) was not found in the last two families, as well as in any Araneoidea so far (Araujo et al. 2022).

Concerning Trachelidae (Clade RTA, Dionycha part A), Orthobula sp. (2n δ = 21, X, 0) differs from Afrocelo plana Lyle & Haddad, 2010 and Trachelas japonicus Bösenberg & Strand, 1906 (2n δ = 22, X, X, 0) (Suzuki 1952; Šťáhlavský et al. 2020) by sex chromosome system. The number of autosomal pairs in these trachelids is reduced in comparison to Trachelas sp. (2n δ = 24, X, X, 0) (Datta and Chatterjee 1983). Telocentric X of Orthobula possibly involves tandem fusion of X1 and X2. The same type of rearrangement is possibly involved in the autosomal number reduction from the 2n δ = 24, X, X, 0 found in Trachelas sp. (for review, see Araujo et al. 2012).

In Corinnidae (Clade RTA, Dionycha part B), the diploid number of the Neotropical genus Falconina sp. (2n δ = 28) differs from members of Castianeirea Keyserling, 1879 (2n δ = 26) (Bole-Gowda 1958; Mittal 1966), which is a globally distributed genus (World Spider Catalog 2022).

Concerning Zodariidae, the karyotype 2n δ = 42, X, X, 0 has been found in two taxa, namely Neotropical Epicratinus sp. (Storennia) and Pax islamita (Simon, 1873) (Zodariinae) (Král et al. 2011; Kumbičak et al. 2014) from the Near and Middle East (Jocqué 1991; Henrard 2019). This karyotype is considered by Král et al. (2006) as ancestral for Entelegynae. Presence of this karyotype in two zodariid subfamilies occurring in distinct geographical areas suggests that this pattern is also an ancestral karyotype for the family. Karyotype evolution of some zodariid clades was accompanied by the reduction of diploid numbers as found in the genera Mallinella Strand, 1906 (2n δ = 22) (Datta and...
Chatterjee 1983 1989) and Zodarion Walckenaer, 1826 (2n χ = 21, 24, 25, 26 and 29) (Pekár and Král 2001; Pekár et al. 2005a b). Epicratinus sp. differentiated from an ancestral pattern found in Pax islanita by the subtelocentric morphology of the X1 chromosome, possibly originated by pericentric inversion.

CONCLUSIONS

The main findings of the study are as follows: 1) the confirmation of an ancestral karyotype for Zodariidae and Oonopidae; 2) the relatively high chromosome number in Palpimanidae which supports an hypothesis on relatively high diploid number in ancestral Entelegynae; 3) the peculiar karyotype in theridosomatid representative.

Acknowledgments: This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Finance Code 001] and Universidade Federal de Mato Grosso do sul (UFMS). We would like to thank Editage (www.editage.com) for English language editing and the reviewer J. Král for his valuable comments and corrections.

Authors’ contributions: Collection and identification of specimens: DDD, DA, ADB. Dissection of specimens and preparation of slides: DDD. Chromosomal analyses: DDD, DA. Manuscript preparation: DDD, ADB.

Competing interests: Authors declare that they have no conflict of interest.

Availability of data and materials: Not applicable.

Consent for publication: The authors declare no competing interests.

Ethics approval consent to participate: Not applicable.

REFERENCES

