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Terrestrial isopods are important to forest soils, breaking down decaying plant material and aiding 
in nutrient recycling. Despite their ecological significance, studies on their diversity and dynamics in 
Neotropical dry forests are limited. This research investigated the seasonality of the alpha and beta 
diversity of terrestrial isopod assemblages in a protected fragment of Tropical Dry Forest in the Colombian 
Caribbean. We sampled isopods in 1 m2 units of litter, and recorded soil and litter temperatures, and 
moisture during twelve field trips conducted between June 2018 and March 2019 in rainy, transition, 
and dry climatic seasons. A total of 867 individuals belonging to four families, six genera, and eight 
species were collected. Alpha diversity did not show significant differences across seasons. However, 
abundance was significantly influenced by seasonality, soil temperature, litter temperature, and soil 
moisture. Moreover, species richness was affected by soil moisture and litter temperature. Our results 
highlight pronounced seasonality in the isopod assemblage, characterized by balanced variation in beta 
diversity, with higher abundance during the transition and rainy seasons. The observed increase in the 
variables, correlated with higher total beta diversity, underscores their role as drivers of seasonal dynamics 
in assemblage structure. Soil temperature and moisture significantly influenced balanced variation 
component of beta diversity. The identified seasonal pattern likely results from the historical adaptive 
processes of these species to the conditions of the tropical dry forest. Nonetheless, effective conservation 
strategies are essential to mitigate the impacts of climate change on edaphic arthropod assemblages in 
this ecosystem.
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BACKGROUND

Colombia has been identified as one of the most 
vulnerable countries to climate change impacts such 
as higher temperature, increased average precipitation, 
and changes in El Niño and La Niña events. The 
Colombian Caribbean could be particularly affected 
(Rodríguez 2013). This region exhibits marked 
seasonality, characterized by a bimodal regime with 
a pronounced dry season at the beginning of the year 
followed by a rainy season with abundant precipitation 
(Rangel-Ch and Carvajal-Cogollo 2012; Guzmán et 
al. 2014). Global climate models predict changes in 
precipitation patterns and an increase in the frequency 
and severity of droughts by the end of this century 
(IPCC 2014 2018). These changes are likely to affect 
the structure and function of ecosystems, particularly 
in areas where water availability is the main limiting 
factor for soil organisms. The goal of this study is 
to evaluate the effect of seasonality on the alpha and 
beta diversity of terrestrial isopod assemblages in the 
Colombian Caribbean Tropical Dry Forest (TDF), 
to better understand how these organisms respond to 
environmental variations.

Soil fauna comprises invertebrates that either 
permanently reside in soil or undergo one or more 
development stages in it (De Aquino and Correira 2005; 
Kern and Köhler 2012). Terrestrial isopods, commonly 
known as “woodlice”, are integral to soil fauna and 
are recognized as important detritivores in numerous 
Neotropical forests and habitats (Leistikow 2001). 
They play a key role in decomposing and dispersing 
soil organic matter (Kern and Köhler 2012; Ŝpaldoňová 
and Frouz 2014; Abd El-Wakeil 2015), breaking down 
the litter layer which provides the main biodegradable 
organic material (Webb 1977; Förster et al. 2006; 
Quadros and Araujo 2008). They can also be used as 
bioindicators of environmental and anthropogenic 
impacts (Dallinger et al. 1992; Paoletti and Hassall 
1999) and as research model organisms (Zimmer and 
Topp 1999; Araujo and Bond-Buckup 2005; Lesěr et al. 
2008; Ŝpaldoňová and Frouz 2014). They exhibit unique 
characteristics in ecophysiology and reproduction 
strategies, making them valuable for studying the 
effects of environment alterations and climate change 
(Sfenthourakis and Hornung 2018; Brigić et al. 
2019; Antoł et al. 2021). Terrestrial isopods belong 
to the Oniscidea suborder, the sole Isopoda group 
fully adapted to terrestrial environments (Taiti 2018; 
Sfenthourakis et al. 2020). It encompasses around 4,000 
species distributed across all global regions except 
the poles (Schmalfuss 2003; Sfenthourakis and Taiti 
2015; Campos-Filho and Taiti 2021). They have been 
recorded from marshy to desert areas, and from coastal 

regions to high mountains, always looking for refuges 
to protect themselves from dehydration (Schmalfuss 
2003; Campos-Filho et al. 2018; López-Orozco et al. 
2022; Ocampo-Maceda et al. 2022).

Oniscidean isopods exhibit high sensitivity to 
variations in different abiotic factors. Environmental 
variables such as temperature and precipitation play 
essential roles in the dynamics of these assemblages as 
they modify their growth, survival, and reproduction 
(Waller and Verdi 2018). Similarly, humidity and 
ground-level radiation can cause changes in species 
richness and abundance (Zimmer 2005; Kern and 
Köhler 2012; Solomou et al. 2019). Several studies 
indicate a close association between the richness and 
abundance of terrestrial isopods and fluctuations in 
soil temperature and humidity (Araujo and Bond-
Buckup 2005; Quadros and Araujo 2007; Fingini 2008; 
Kern and Köhler 2012; Waller 2012). To date, only 
one ecological study has been conducted in Colombia 
(Preciado and Martínez 2014). In it, the authors found 
no direct relationship between environmental variables 
such as soil and ambient temperature, relative humidity, 
and the richness and abundance of isopods. However, 
they suggest that soil conditions or characteristics, 
including humidity, water table, and composition, may 
be more decisive in determining the number of Oniscids 
found in a given habitat.

The TDF is recognized as strategic biome of low-
lying areas, exhibiting a high degree of endemism 
within the Neotropical region (Olson et al. 2001; 
Lamoreux et al. 2006; Pennington et al. 2006; Morrone 
2014; Banda-R et al. 2016). This ecosystem spans 
elevations between 0–1,000 m a.s.l., with some areas 
reaching heights of up to 2,200 m (Trejo-Vázquez 1999; 
Miles et al. 2006). It is characterized by distinct climatic 
seasons marked with a very long period of drought 
with high temperatures, followed by rainy seasons for 
short periods, which strongly influence the life forms 
inhabiting this environment (Murphy and Lugo 1986; 
IAVH 1997 1998). Consequently, organisms in this 
biome must develop various adaptations to survive 
in these extreme conditions. During the dry period, 
vegetation cover typically sheds foliage as a strategy 
to avoid desiccation and conserve energy (Murphy and 
Lugo 1986; IAVH 1998). The Colombian Caribbean 
hosts fragments of TDF that are among the best 
conserved in the country. However, this ecosystem is 
currently facing an alarming level of threat globally 
due to multiple factors, primarily associated with 
agricultural activities that have led to its fragmentation 
and decline.

The study aimed to examine the impact of 
seasonal changes on the diversity of terrestrial isopod 
communities in the Colombian Caribbean TDF. 
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Specifically, it focused on assessing the alpha and 
beta diversity of these assemblages to provide insight 
into their resilience and adaptability to environmental 
fluctuations. By advancing our understanding of isopod 
responses to seasonal shifts, this study contributes to 
broader knowledge of biodiversity dynamics within 
a threatened and ecologically valuable biome. Given 
that only 5% of Colombia’s TDF is protected under the 
National System of Protected Areas, this research also 
underscores the need for enhanced conservation efforts 
(Janzen 1988; Etter 1993; García et al. 2014).

MATERIALS AND METHODS

Study area

The Botanical Garden of Cartagena “Guillermo 
Piñeres” (BGGP) is located in the Matute sector of 
the municipality of Turbaco, Bolívar department 
(Colombian Caribbean), at the geographical coordinates 
10°21'16.35"N and 75°25'40.27"W (Fig. 1). The 
weather in this area is influenced by the movements of 

the Intertropical Convergence Zone (ITCZ) and three 
climatic seasons are recognized: 1. Dry (December–
April),  characterized by strong winds and low 
precipitation; 2. Transition (May–August), in which 
rains and dry periods occur; and 3. Rainy (September–
November), marked by increased rainfall. The duration 
and intensity of these seasons may vary due to the 
influence of the American Monsoon System, low-level 
atmospheric wind currents, and El Niño and La Niña 
events (Angulo 1954; CIOH 2007; Rangel-Ch and 
Carvajal-Cogollo 2012; Sierra-Labastidas et al. 2014).

The BGGP is situated at an altitude of 130 m and 
presents an average annual temperature of 28°C, annual 
rainfall ranges between 900 and 1,200 mm, with an 
average relative humidity of 70% (Londoño-Lemos et 
al. 2022). The site features springs originating on the 
property, primarily from the Matute stream. It represents 
one of the preserved TDF fragments in the Colombian 
Caribbean, and is considered a Key Biodiversity Area 
(KBA) a global level (Garcia et al. 2014; Londoño-
Lemos et al. 2022; Key Biodiversity Areas Partnership 
2024).  The BGGP encompasses nine hectares, 
including a patch of Native Forest, live plant collections 

Fig. 1.  Location of the Botanical Garden of Cartagena “Guillermo Piñeres” in the north of Bolívar, Colombian Caribbean. Green area: Colombian 
Tropical Dry Forest (Garcia et al. 2014).
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(Arboretum, Palmetum, Fruit trees, and Ornamentals), 
and several habitats such as moss and fern gardens 
(Londoño-Lemos et al. 2022; JBGP 2024). The 
Arboretum collection and Native Forest were selected 
as the samples areas for terrestrial isopods. Native 
Forest (Fig. S1) can be considered a gallery forest, 
characterized by abundant vines, woody climbers, and 
trees exceeding 10 meters in height with well-developed 
crowns, being representative Brosimum alicastrum Sw., 
Trophis racemosa (L.) Urb., Morisonia frondosa (Jacq.) 
Christenh. & Byng, Anacardium excelsum (Kunth) 
Skeels, Guarea guidonia (L.) Sleumer, Sterculia apetala 
(Jacq.) H.Karst., and Swietenia macrophylla King. 
(Londoño-Lemos et al. 2022). The Arboretum collection 
(Fig. S2) consists primarily of timber tree species of 
economic interest and/or endangered status, such as 
Cedrela odorata L. 1753 and Leuenbergeria guamacho 
(F.A.C.Weber) Lodé, as well as common fruit trees in 
the region, like Mammea americana L. 1791.

Sampling and taxonomic identification

The samples were conducted during specific 
climatic season between 08:00 and 17:00 hours in June–
July 2018 (Transition season), October–November of 
the same year (Rainy season), and February–March 
2019 (Dry season). Twelve samples were carried out, 
six were conducted in each sample area, and four were 
conducted per season. The sampling method described 
by Sokolowicz and Araujo (2013) was adopted for 
specimen collection. This involved using an 18 m long 
by 6 m wide transect divided into seven quadrats of 3 
× 3 m within both the Native Forest and Arboretum. 
Within each quadrat, a sample unit measuring 1 × 1 m 
was randomly selected using a dice; the first throw 
determined the number of meters forward, and the 
second throw indicated the number of meters sideways. 
Litter covering a 1 m2 area was sieved using a Winkler 
sifter with a 30 cm diameter and a 1 cm mesh size. The 
sieved material was then spread onto a white cloth, and 
specimens were picked out using soft tweezers and 
deposited into 15 mL plastic bottles containing 70% 
ethanol. To study the relationship between soil/litter 
(decaying leaves bed) temperature and the structure of 
the isopod assemblage, soil temperature was measured 
using a soil thermometer in each quadrant. Soil moisture 
was assessed by collecting samples from intercalated 
quadrants, which were then weighed. After 72 hours at 
100°C, the dry weight was obtained, and the difference 
in weights was divided by the dry weight and multiplied 
by 100 to calculate the soil moisture percentage.

The collected individuals were identified using 
morphological characters, following López-Orozco 
et al. (2016), Carpio-Díaz et al. (2018 2023), and 

Campos-Filho et al. (2020). Specimens were preserved 
in 75% ethanol and stored in the Laboratory of the 
Hydrobiology Research Group within the Biology 
Program at the University of Cartagena.

Data analysis

All analyses were performed using RStudio v4.2.0 
(R Core Team 2020). Alpha and beta diversity graphics 
were generated using the “ggplot2” package (Wickham 
2016).

α-diversity

We assessed the completeness of sampling by 
applying Chao et al. (2014) method, using extrapolation-
interpolation curves to estimate sample coverage 
based on abundance data, following the methodologies 
proposed by Chao et al. (2014) and Colwell et al. (2012). 
To characterize terrestrial isopods assemblage alpha 
diversity, we use effective species numbers for each 
climatic season, representing three diversity orders: q0 
(number of observed species), q1 (exponential of the 
Shannon index), and q2 (inverse of the Simpson index) 
(Hill 1973; Moreno et al. 2011; Chao et al. 2016). We 
calculated 95% confidence intervals for each q order 
using 500 bootstrap pseudoreplicates and constructed 
alpha diversity profiles. These analyses were performed 
using “iNEXT” package and the online iNEXT tool 
(Chao et al. 2016; Hsieh et al. 2016). Additionally, to 
compare richness, abundance, and uniformity patterns 
across seasons, rank/abundance curves were generated 
using Log10 transformed abundance data, following 
Whittaker’s (1972) approach.

Generalized Linear Models (GLMs) were 
performed to assess the effect of litter temperature, 
soil temperature, soil moisture, and seasonality on 
abundance and diversity orders. Abundance was fitted 
to a Poisson distribution, while diversity orders (q0, 
q1, q2) followed a normal distribution. The best-fitting 
models were selected based on the Akaike Information 
Criterion (AIC) (Akaike 1974), and an ANOVA was 
conducted to determine the contribution of each 
explanatory variable (abundance and diversity orders). 
These analyzes were carried out using the “glmnet” 
package (Friedman et al. 2010).

β-diversity

The abundance matrix was initially transformed 
using the fourth root method to mitigate the influence 
of dominant species. Subsequently, we conducted a 
Permutational Analysis of Variance (PERMANOVA) 
of one-way using the Bray-Curtis index with 999 
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permutations to evaluate differences in the assemblage 
structure between seasons (Anderson 2001). This 
analysis used the adonis2 function from “vegan” 
package (Oksanen et al. 2022). To assess differences 
between pairs of seasons, we employed the pairwise.
adonis function from the “pairwiseAdonis” package 
(Martinez 2020).

Beta diversity and its components (balanced 
variation in abundance and abundance gradients) 
were assessed following Baselga’s proposal (2010 
2013 2017) by implementing the functions beta.
multi.abund and beta.pair.abund with the Bray-Curtis 
index through the “betapart” package (Baselga 2010 
2013 2017; Baselga and Orme 2012). Non-metric 
Multidimensional Scaling (NMDS) ordination was used 
to visualize differences identified in the PERMANOVA 
results. This was conducted using the “vegan” package 
metaMDS function (Oksanen et al. 2022). NMDS and 
PERMANOVA was performed separately for total 
beta diversity and each component to elucidate the 
modulating processes.

Finally, the Mantel test was used to evaluate the 
correlation between total beta diversity, its components, 
and soil environmental variables, examining whether 
observed changes in beta diversity were associated with 
variation in environmental factors. The Mantel test used 
the mantel function from “vegan” package, with 999 
permutations (Mantel 1967; Mantel and Valand 1970; 
Oksanen et al. 2022).

RESULTS

Composition and abundance of the assemblage

A total of 867 individuals were collected, 
comprising eight species from four families and six 
genera of oniscideans (Table 1). The family Philosciidae 
Kinahan, 1857 exhibited the highest richness (three 
species), followed by Armadillidae Brandt, 1831 and 
Platyarthridae Verhoeff, 1949, each with two species, 
and Scleropactidae Verhoeff, 1938 was represented by 
one species.

The most abundant family was Philosciidae 
(n  = 611,  70.5%),  fol lowed by Platyarthridae 
(n = 102, 11.8%). Armadillidae (n = 84, 9.7%) and 
Scleropactidae (n = 70, 8.1%) were the families with 
the lowest abundance. The most abundant species were 
Androdeloscia sp., with 412 individuals, Androdeloscia 
colombiana with 189, Trichorhina bermudezae with 
94, Colomboniscus carpioi with 70, and Venezillo gigas 
with 59 individuals. In comparison, Ischioscia sp. had 
ten, and Trichorhina heterophtalma had eight, the latter 
being the species with the lowest number of individuals 
(Table 1).

Seasonal α-diversity and variables

The completeness of the sample, with a 95% 
confidence interval for the sampling sites, was 96.2% 
for the dry season, 100% for the transition season, and 
99.5% for the rainy season. These values suggest that 
the sampling was representative across the three seasons 

Table 1.  Composition and abundance of terrestrial isopods assemblage collected during different climatic seasons at 
the Botanical Garden of Cartagena “Guillermo Piñeres” in the Colombian Caribbean

Family Species Transition season Rainy season Dry season Total

Armadillidae
Ctenorillo dazai Carpio-Díaz, López-Orozco & 

Campos-Filho, 2018
18 6 1 25

Venezillo gigas (Miers, 1878) 53 1 5 59

Philosciidae

Androdeloscia sp. 304 82 26 412
Androdeloscia colombiana López-Orozco, Carpio-Díaz 

& Campos-Filho, 2016
106 69 14 189

Ischioscia sp. 0 10 0 10

Platyarthridae
Trichorhina bermudezae Carpio-Díaz, López-Orozco & 

Campos-Filho, 2018
91 2 1 94

Trichorhina heterophtalma Lemos de Castro, 1964 4 0 4 8

Scleropactidae
Colomboniscus carpioi Carpio-Díaz, López-Orozco & 

Campos-Filho, 2018
22 48 0 70

Total 598 218 51 867
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(Fig. 2a). The abundance range curves exhibited low 
evenness between the seasons, with steeper curves 
during the transition and rainy seasons, indicating that 
seasonality affects the structure of the terrestrial isopod 
assemblage (Fig. 2b).

Regarding alpha diversity, both the transition and 
rainy seasons exhibited the highest number of effective 
species (seven species each) (Fig. 2c). Meanwhile, the 
effective number of common species (q1) was observed 
during the transition season, followed by the rainy 

Fig. 2.  (a) Sampling completeness of terrestrial isopods assemblage for climatic seasons. (b) Rank abundance curve of the assemblage of terrestrial 
isopods for climatic seasons, α-diversity profile for the three climatic seasons with 95% confidence intervals (q ± 95% CI), order q0 (c), order q1 (d), 
and order q2 (e).
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season (Fig. 2d). Dominant species (q2) were mainly 
represented during the rainy and transition seasons 
(Fig. 2e). Across all diversity orders, the dry season 
consistently showed the lowest values; however, the 
confidence intervals indicate that there are no significant 
differences between seasonality and diversity orders. 
Generalized linear models revealed that seasonality, 
soil temperature, litter temperature, and soil moisture 
significantly affect abundance. Litter temperature and 
soil moisture significantly influenced the diversity 
order (q0). Conversely, these variables did not present 
any significant effect on diversity orders (q1) and (q2) 
(Tables 2, S1).

Seasonal β-diversity and association with soil 
variables

The terrestrial isopod assemblage significantly 
differs between climatic seasons (Fig. 3a). Specifically, 
these differences were observed between rainy and 
dry seasons (R2 = 0.57; FPERMANOVA = 8.17; p = 0.02), 
and between transition and dry seasons (R2 = 0.57; 
FPERMANOVA = 8.22; p = 0.02). Total beta diversity 
between climatic seasons (βBC = 72.6), was influenced 
by the balanced variation in abundance (βBC:BAL = 51.3, 
70.7%) (Fig. 3b), compared to the abundance gradient 
(βBC:GRA = 21.3, 29.3%) (Fig. 3c). In other words, the 
structure of the terrestrial isopod assemblage varies 
across climatic seasons, primarily due to changes in 
the balanced variation of their abundances, indicating 
that there is a high rate of replacement of individuals 
(turnover) between climatic seasons.

Increas ing  so i l  env i ronmenta l  var iab les 
significantly increased total beta diversity between 

climatic seasons (Fig. 3d, e, f). Additionally, with 
increasing soil temperature and moisture, there was 
an observed a significative increase in the balanced 
variation component (Fig. 3g, h, i). The abundance 
gradient component of beta diversity was not correlated 
with soil variables (Fig. 3j, k, l).

DISCUSSION

This study provides important insights into 
the diversity, composition, and seasonal dynamics 
of terrestrial isopod assemblages in the Colombian 
Caribbean Tropical Dry Forest (TDF).

Composition and abundance of the assemblage

Six terrestrial isopods species previously reported 
for the study area by Carpio-Díaz et al. (2018) were 
found. Additionally, based on the work of López-
Orozco et al. (2016) and Campos-Filho et al. (2020), 
Androdeloscia sp. and Ischioscia sp. are a possible new 
species for science. Borja-Arrieta (2019) reported nine 
species in the Campo Aventura Roca Madre, a TDF 
area in good conservation status in the department of 
Sucre. The richness observed in Campo Aventura Roca 
Madre may be attributed to the well-preserved TDF 
cover, extensive vegetation, and diverse microhabitats 
it offers (Pizano et al. 2014). In contrast, the BGGP 
experiences greater environmental pressure due to urban 
development in its vicinity, which may explain why 
certain species found in Campo Aventura Roca Madre 
are either absent from the BGGP or occur in lower 
densities. Nonetheless, BGGP harbors an important 

Table 2.  ANOVA test results of the generalized linear model on abundance of terrestrial isopods assemblage and 
diversity orders (Hill numbers) and variables. Likelihood ratio (lr x2), degrees of freedom (d.f.)

Response variables Explanatory variables lr x2 d.f. p-value

Abundance

Seasonality 27 1 2.039e-07 ***
Soil temperature 31.59 1 0.03212 *
Litter temperature 110.78 1 2.2e-16 ***
Soil moisture 324.09 1 2.2e-16 ***

q0

Seasonality 0.0356 1 0.8402
Soil temperature 1.736 1 0.16363
Litter temperature 5.5112 1 0.03794 *
Soil moisture 8.8656 1 0.05041*

q1 Soil temperature 0.9355 1 0.158

q2
Soil temperature 1.01626 1 0.1122
Litter temperature 1.7364 1 0.1813
Soil moisture 2.3303 1 0.2245
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Fig. 3.  Terrestrial isopods beta diversity and its components in Botanical Garden of Cartagena “Guillermo Piñeres”. Non-metric Multidimensional 
Scaling (NMDS) ordination analysis with terrestrial isopods assemblage between climatic seasons using total β-diversity (a), balanced variation of 
β-diversity (b), and abundance gradient β-diversity (c); relationships (Mantel test) between soil temperature, soil moisture, and litter temperature with 
total β-diversity (d, e, f), balanced variation (g, h, i), and abundance gradient (j, k, l).
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proportion of the current terrestrial isopod richness 
associated with the TDF of the Colombian Caribbean.

The presence of V. gigas and Ctenorillo dazai in 
all three seasons may be attributed to the physiological 
and ecomorphological adaptations of these species 
to arid environments. Generally, species within the 
Armadillidae family possess well-developed respiratory 
structures in their pleopods, enabling them to conduct 
respiration effectively in dry environments (Taiti et al. 
1998; Paoli et al. 2002). Moreover, these species group 
exhibit eco-morphological characteristics that classified 
them as “Rollers” (Schmalfuss 1984); this conglobation 
capacity characterized by a convex body, helps reduce 
desiccation and predation pressure (Warburg 1987; 
Hornung 2011).

In contrast, species in the Philosciidae family 
are typically dominant in forested environments of 
the Neotropics and are commonly associated with 
microhabitats exhibiting high moisture levels (Araujo 
and Bond-Buckup 2005; Almerão et al.  2006). 
Ischioscia sp. was exclusively found during the rainy 
season, likely due to the high soil moisture characteristic 
of this period. Species within this genus are known 
to inhabit both secondary and primary rainforests at 
elevations of up to 2000 m, with their distribution 
influenced by soil moisture and litter depth (Leistikow 
1999; Campos-Filho et al. 2020). 

The results regarding the low abundance of 
T. heterophtalma align with findings by Quadros 
and Araujo (2008), who reported a low density 
of a Trichorhina (Budde-Lund, 1908) species in 
semideciduous secondary forests within Itapuá State 
Park, southern Brazil. In contrast, T. bermudezae was 
abundant during the transition season, consistent with 
the typical pattern of population peaks observed in 
terrestrial isopods at the onset of precipitation (Rushton 
and Hassall 1987; Kern and Köhler 2012).

Such variation in seasonal abundance reflects the 
diverse adaptations among isopod species in response to 
the distinct climatic conditions within the TDF.

Seasonal α-diversity of terrestrial isopods 
assemblage

Interestingly, during this study, no changes 
were identified in alpha diversity between seasons. 
This finding coincides with Almerão et al. (2006), 
who reported no variation in richness and equitability 
in the different climatic seasons in Brazil. These 
results suggest that, despite the marked seasonality 
of dry ecosystems in the Colombian Caribbean, 
which leads to species turnover between seasons, the 
ecological structure of the assemblage in the studied 
environments remains stable throughout the year. The 

replacement of species observed under the methods 
used may be attributed to adaptations of each species 
to environmental characteristic such as heavy rainfall 
or prolonged drought, potentially involving local 
migrations to adjacent areas or changes in microhabitat 
use (e.g., different soil layers, different vegetation strata) 
(Sfenthourakis and Hornung 2018).

The BGGP has a typical Gallery Forest, providing 
available organic matter year-round that serves as food 
for decomposer organisms. Additionally, it contains 
permanent bodies of water, potentially serving as a 
refuge for isopod species during the dry season and 
influencing the structure of assemblages. Almerão 
et al. (2006) also identify responses to anthropic 
pressure (such as trail visits and ecotourism), variations 
in vegetation cover, and floristic composition as 
determinants of isopod assemblage structure, all of 
which are relevant factors in the BGGP, an open space 
for visitors.

This study identifies changes in abundance 
throughout the three climatic seasons, which are 
associated with soil parameters and seasonality. 
Moreover, both litter temperature and soil moisture 
influenced the seasonal richness of terrestrial isopods. 
The high temperatures and low rainfall typical of the dry 
season in the TDF, likely restricted the activity of these 
organisms due to reduced food and shelter availability 
and adverse environmental conditions (Rushton and 
Hassall 1987; Leistikow 2001; Hassall et al. 2018), 
resulting in decreased numbers of individuals and 
species richness. Furthermore, the findings indicated 
that isopod populations maintained higher abundances 
during in the transition and rainy seasons, suggesting 
greater stability with increased humidity (Brigić et 
al. 2019). Several authors have noted that increasing 
soil temperature is associated with reduced absolute 
abundance of terrestrial isopod species, with population 
densities and reproductive aspects directly linked to 
soil physical variables (Araujo and Bond-Buckup 2004, 
2005; Hornung et al. 2007; Quadros and Araujo 2007; 
Quadros et al. 2009; Kern and Köhler 2012; Lopes-
Leitzke et al. 2013; Sokolowicz and Araujo 2013; 
López-Orozco et al. 2024).

Considering the above, the richness of terrestrial 
isopods in the TDF of the Colombian Caribbean 
remains consistent across climatic periods. However, 
increases in soil and litter temperature and decreasing 
moisture significantly impact assemblage abundance 
and richness. This behavior likely results from 
adaptive processes unique to each species, which 
possess specific ecomorphological and physiological 
characteristics enabling them to complete their life 
cycle in such environments. Generally, the distribution 
of terrestrial isopods closely correlates with soil 
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moisture and habitat availability. Nonetheless, certain 
species may exhibit varied responses to environmental 
heterogeneity, reflecting the group’s interspecific 
diversity (Sfenthourakis and Hornung 2018). An 
additional and under-documented aspect is the loss of 
individuals due to mortality from desiccation caused 
by environmental conditions, which could influence, 
albeit not significantly, the abundance dynamics of each 
species (Paris 1963; Sutton 1968).

β-diversity and association with soil variables

The assemblage of terrestrial isopods exhibited 
variations throughout the climatic seasons in the TDF, 
which were associated with changes in soil and litter 
temperature and soil moisture. These findings align 
with previous studies by Brereton (1957), Hornung and 
Warburg (1995), Khemaissia et al. (2012) and Lopes-
Leitzke et al. (2013), which reported that seasonal 
climate patterns influence assemblage structure. Our 
results indicate that the beta diversity of the terrestrial 
isopod assemblage between climatic seasons was 
primarily affected by the balanced variation component 
of abundances (70.7%). This suggests that observed 
changes in assemblage structure between climatic 
seasons are mainly attributable to balanced variation in 
abundances, which correlates directly with changes in 
soil temperature and moisture.

According to Rushton and Hassall (1987) and 
Kern and Köhler (2012), soil temperature and moisture 
play key roles in determining these organisms’ growth, 
survival, and reproduction. Optimal temperature 
and humidity conditions lead to population peaks. 
Generally, the transition and rainy seasons exhibited 
a higher abundance of terrestrial isopod species, with 
humidity percentages close to 39 and 41%, respectively. 
Overall, the soil arthropods assemblages of the TDF in 
the Colombian Caribbean demonstrate seasonal patterns 
closely linked to variations in precipitation, relative 
humidity and temperature (Ortega-Echeverría et al. 
2019; García et al. 2021; Zapata et al. 2023).

Conservation implications in the context of 
environmental and climate changes

Terrestrial isopods are important components 
of soil fauna, playing an important role in the 
decomposition of organic matter, thereby contributing 
to soil formation and nutrient recycling (Zimmer and 
Topp 1999). They help accelerate the decomposition 
rate of organic matter (Ŝpaldoňová and Frouz 2014; 
Abd El-Wakeil 2015). Also, they serve as potential 
prey for various vertebrates, such as birds, mammals 
and amphibians, as well as for certain groups of 

invertebrates, including arachnids, insects, and 
myriapods (Araujo 1999; Paoletti and Hassall 1999). In 
agricultural contexts, they may even become emerging 
pests due to observed crop attacks (Waller 2012). 
Within the TDF, the BGGP represents a gallery forest 
habitat where terrestrial isopods, along with other 
edaphic arthropods, can access the necessary resources 
and environmental conditions (such as temperature 
and moisture) for their life cycle (Ortega-Echeverría 
et al. 2019; Zapata et al. 2023). Therefore, conserving 
this small but ecologically valuable portion of TDF in 
the Colombian Caribbean is crucial for preserving the 
biodiversity and ecological integrity of this ecosystem. 
Environmental changes and anticipated impacts of 
climate change, including more extreme weather 
events, rising temperatures, and altered precipitation 
patterns (IPCC 2014 2018), pose significant threats to 
biodiversity in the Colombian Caribbean TDF, a unique 
and highly seasonal ecosystem (Gitay et al. 2002). These 
changes are expected to impact soil fauna, including 
terrestrial isopods, whose abundance and diversity 
contribute to ecosystem resilience, particularly in 
nutrient-poor soils that rely on decomposer organisms. 
The study’s findings suggest that increased temperatures 
and reduced soil moisture due to climate change could 
decrease isopod richness and abundance, potentially 
disrupting essential ecosystem functions like nutrient 
cycling. In this context, BGGP represents an important 
conservation area within the Colombian Caribbean TDF, 
as it provides a stable refuge for isopods and other soil 
fauna. Safeguarding and managing this area is critical to 
maintaining biodiversity and ecosystem functions in the 
face of climate change. Protecting such habitats could 
help mitigate the impacts of climate fluctuations on soil 
communities, preserving their role in nutrient cycling 
and soil health.

CONCLUSIONS

The alpha diversity parameters of the terrestrial 
isopod assemblage from the Colombian Caribbean 
TDF did not exhibit temporal variations. However, 
the assessed soil physical variables and seasonality 
significantly influenced abundance. This pattern is 
supported by the physiological and ecomorphological 
adaptations observed in the species. The variables 
examined in this study strongly influence the seasonal 
dynamics of the TDF terrestrial isopod assemblage.

These findings have important implications for 
understanding organism dynamics within the TDF 
under environmental and climate change. Expanding 
sampling efforts to other habitats in the country where 
information on oniscideans is lacking, particularly in 
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priority conservation areas, is essential. This expanded 
sampling will help assess these organisms’ diversity, 
abundance, and seasonality, establishing a baseline for 
potential conservation, management, and sustainable 
use initiatives.
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