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identified as K. leroda with similarity rates ranging from 
99.5% to 100%, supporting the molecular identification. 
The non-identified Kata sp. revealed about 94% 
similarity with K. evelinae.

For the Brazilian specimens only, the delimitation 
tests supported the existence of three lineages (Fig. 
4A), where population analyses revealed a pronounced 
geographic pattern in the distribution of these species. 
The haplotype network constructed for the two Kata 
species combined revealed that K. evelinae and Kata sp. 
are separated from K. leroda by 59 and 69 mutational 
steps, respectively (Fig. 4B). The cluster of the non-
identified Kata species included 11 individuals (Table 
S2) from two locations, Armação and Vermelha, 
yielding only two distinct haplotypes. Consequently, 
the haplotype diversity was low (Hd = 0.1818). In 
the population from Praia Vermelha (n = 2), both 
individuals shared the same haplotype, resulting in a 
nucleotide diversity of zero (Table 2). In contrast, the 
Armação population comprised nine distinct specimens, 
yet it still exhibited only two haplotypes (θS = 0.0003). 
Kata leroda (Table S2) clade comprises 12 specimens 
from three locations (Joaquina, Estaleiro, and Praia 
Vermelha), encompassing just three haplotypes with 
seven polymorphic sites and four singletons (Fig. 4B). 
For this reason, the haplotype diversity was high (Hd 
= 0.4545), where the population from Praia Vermelha 
population (n = 5) displayed a higher nucleotide 

diversity (θS = 3.00) with three distinct haplotypes (Table 
2). Nevertheless, the Estaleiro population revealed five 
specimens entirely identical, resulting in a nucleotide 
diversity equal to zero. In contrast, the Joaquina 
population (n = 2) had two specimens differing only 
by one polymorphic site, thereby yielding a nucleotide 
diversity of one.

DISCUSSION

In this study, we sequenced a partial region 
of the nuclear gene 28S rRNA from 32 proseriates 
collected from the Southern and Southeastern regions 
of the Brazilian coastline, as well as specimens from 
the USA, in order to describe the genetic diversity 
of the group, focusing on the Kata genus. This study 
presents the first molecular study at a population level 
of Proseriata along the Brazilian coast. Additionally, it 
contributes to the understanding of molecular taxonomy 
within this understudied group in meiofauna diversity 
investigations.

According to previous records of Proseriata 
from Brazil, the genera we found have already been 
documented in the Southeastern coast, including 
species such as Meidiama lutheri, Nematoplana 
asita, Nematoplana mirabilis, Parotoplana, and Kata 
leroda (Curini-Galletti 2014), providing support to our 

Fig. 2.  Species delimitations estimated for a 28S rRNA dataset comprising 32 Proseriata specimens. The maximum likelihood tree is shown on the 
left. Vertical bars on the right represent evolutionary lineages determined by ASAP, mPTP, bPTP, and GMYC, respectively. The final column shows 
genus-level taxonomic identification based on blastn. Different-colored clades in the tree indicate consensus on species identification.
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molecular identification. The relationship recovered 
with the ML method implemented here revealed a 
similar topology previously reported for proseriates 
using both 18S rRNA and 28S rRNA combined (Scarpa 
et al. 2017). This is likely because we used the 28S 
rRNA partial gene, a conserved region among different 
lineages. This marker has been previously employed 
for species delimitation and phylogeny investigations 
with Proseriata (Litvaitis et al. 1996; Scarpa et al. 2015 
2016a b 2017), providing reliable results. Nonetheless, 
it is worth noting that, since our analysis is based on a 
single gene, both the phylogenetic relationships and the 
intrapopulation diversity results we observed reflect the 
evolutionary history of this specific marker. 

A phylogenetic relationship assessment was 

conducted using specimens identified through 
morphology (Curini-Galletti 2014) and molecular data 
(Scarpa et al. 2015) to determine the placement of the 
Brazilian Kata specimens within Proseriata. In this 
matter, the tree topology obtained for all Proseriata 
sequences placed all Brazilian individuals within a 
clade alongside specimens previously identified through 
refined morphological analyses as Kata. The presence 
of three well-supported clades of Kata species was 
observed along the Brazilian coastline: K. leroda, 
present in Joaquina, Praia Vermelha and Estaleiro, K. 
evelinae from Ilhabela reported in previous studies, 
and a still non-identified Kata sp., found in Armação 
and Praia Vermelha. This indicates either the existence 
of an undescribed Kata species or the occurrence of 

Fig. 3.  Maximum Likelihood phylogenetic tree of Proseriata highlighting the Kata genus clade based on the partial 28S rRNA using 1,000 bootstraps 
replicates (lnL = -40128.5342) The tree includes specimens from the present study, along with all Kata sequences available in GenBank. Bootstraps 
support (BS) values are indicated at each node. Only BS above 80 are shown. Specimens from Brazil are highlighted in the partial tree (2). The 
complete phylogenetic tree is indicated on the left and also provided in figure S1.
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cryptic speciation within the genus. Both hypotheses 
are plausible and warrant further investigation, which 
should be tested through larger sample sizes, and 
additional comparative morphological analyses. This 
should be specifically tested with specimens from Praia 
Vermelha, where the apparent coexistence of the two 
Kata species provides a unique opportunity for detailed 
comparative analyses. The specimen from Florida 
was grouped with two other Kata from Panama, sister 
to a clade containing the Brazilian specimens and 
Otoplana. Due to the lack of more detailed ecological 
and morphological data on both specimens from Florida 

and Panama, the data is insufficient to provide a deeper 
discussion regarding its evolutionary implications.

Additionally, the presence of cryptic speciation 
between Kata and Otoplana genera is supported in the 
phylogeny. The Kata specimens from Panama, identified 
through morphology in previous studies, cluster with 
two distant Otoplana clades. These observations are 
noteworthy, as Kata acts as the ecological counterpart 
to Otoplana on opposite sides of the Atlantic in an 
area known as the ‘Otoplana-zone’ (Gerlach 1953; Ax 
1956). Further investigation into their species diversity 
and morphological convergences is needed to enhance 

Fig. 4.  Haplotype networks and a phylogenetic tree constructed from Kata leroda, K. evelinae and Kata sp. 28S rRNA partial genes. A) The 
maximum likelihood phylogenetic tree shows the relationships among Kata species. Vertical bars on the right represent evolutionary lineages 
determined by ASAP, mPTP, bPTP, and GMYC, respectively. Different-colored clades in the tree indicate consensus on species identification. Taxa 
in dark red were obtained from NCBI and previously identified based on morphology. B) Haplotype network built using the TCS model for the 
Kata species. Each node represents a haplotype, where its size indicates haplotype frequency, and colors indicate the locality. Black nodes represent 
inferred ancestral nodes and mutation steps are represented as hatch marks.

Table 2.  Diversity indices based on 28S rRNA of two Kata species obtained from Arlequin software

Population n H PS θπ

Kata sp.
Praia Vermelha (VER) 2 1 0 0

Armação (AR) 9 2 1 0.0003

Kata leroda
Praia Vermelha (VER) 5 3 6 3

Estaleiro (ES) 5 1 0 0
Joaquina (JO) 2 2 1 1

The table presents the sample size (n), number of haplotypes (H), number of polymorphic sites (PS), nucleotide diversity (θπ), and segregating sites (θS) 
of each location from both Kata clusters identified on the delimitation tests.
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our understanding of the meiofauna functional traits 
in highly dynamic sandy beach environments (e.g., 
Martinez et al. 2024). 

For a long time, it was widely assumed that 
meiofauna would tend to exhibit wide distribution 
due to their small size, lack of larval stage, and lack 
of diagnostic features. Therefore, we would expect a 
low rate of gene flow and low genetic diversity. Our 
results seem to partially support this scenario. For Kata 
sp., the individuals from the same beach are entirely—
or mostly—genetically identical, revealing very low 
diversity. For K. leroda, despite a higher number of 
individuals per location, the flatworms appear to be 
highly similar on a microgeographic scale. However, 
both species still might exchange migrants among distant 
locations, supported by the shared haplotypes among 
distinct locations. An alternative scenario is that these 
local populations originated from the same evolutionary 
lineage in the past, composing one single panmictic 
population. Similar cases have been observed in other 
direct-developing marine invertebrates (e.g., Derycke 
et al. 2010; Kieneke and Nikoukar 2017), where the 
authors found long-distance migration evidenced by 
shared haplotypes. Despite lacking a dispersal larval 
stage, certain meiofauna taxa avoid entering the water 
column by adhering to the sediment, where these 
individuals may migrate through passive transport or 
be carried by currents in suspended sediments (Giere 
2009; Di Domenico et al. 2014). In these cases, the 
dispersal of adults may play a more significant role than 
the larval stage in explaining genetic diversity (Peres 
et al. 2018). The discovery of a distinct evolutionary 
lineage, suggesting the presence of a new, unidentified 
Kata species, should be further confirmed through 
comprehensive morphological and molecular analyses.

CONCLUSIONS

In this study, we provided a molecular record of 
Proseriata and the first study at a population level of the 
genus Kata along the Brazilian coast. Our investigation 
contributes to the understanding of molecular taxonomy 
within this relatively understudied group in meiofauna 
research. We initially hypothesized that the lack of a 
larval stage in these organisms would result in low 
local genetic diversity and limited gene flow between 
distant populations. Instead, for Kata leroda, we 
found evidence of high genetic diversity and dispersal. 
Our research significantly contributes to the gap of 
knowledge regarding evolutionary processes at the 
molecular level in soft-bodied meiofauna and highlights 
the importance of the combination of morphological 
and molecular taxonomy for further studies.
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