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Machine learning (ML) constitutes a division of artificial intelligence (AI) that aims to train 

computers how to perform specific tasks without explicit programming. Traditional ML tools are 

widely used for classification and identification of animals. However, these methods have some 

drawbacks because of the extensive manual reliance and the delay in data interpretation. To 

overcome this, Applied Deep Learning algorithms are used with Artificial Neural Networks (ANN) 

and Convolution Neural Network (CNN) models introduced to address species classification, 

characteristics detection, and pattern recognition tasks helping in accurate identification and 

classification of animals.  

In this paper, we have tried to compile and deliver a recent comprehensive information on 

latest available investigations in the field of life sciences particularly used for animal identification. 

We have also accentuated the diverse applications of machine learning models including other 

parameters like, features, accuracy gained, database used and their limitations. 
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The red flour beetle, Tribolium castaneum (Coleoptera; Tenebrionidae) is a prevailing and 

detrimental secondary insect pest of stored grains along with derived products causing 7% to 35% 

annual loss. Despite of that, nowdays it is also extensively considered as a model organism for 

genetic disease investigation. While using it in scientific research, exact sex identification of these 

insects becomes a crucial preliminary step. Generally, pupal stage is used to sort these insects 

according to their sex and needs expert humans. It is crucial to employ image processing and ML 

algorithms to quickly identify gender of this insect which is not done yet. 

We have used a CNN-based smart technique to recognize and categorize gender differences 

in T. castaneum using microscopic images in order to build an intelligent system for applied 

research. For this study, a dataset is created by taking 116 microscopic images of both the dorsal 

and ventral sides of pupae of two different sexes. In this algorithm, a 2D matrix of feature map is 

selected sequentially and the maximum value in the matrix is selected to generate a pooled feature 

map. The Rectified Linear Unit (ReLU) activation function is used for the CNN. The classification 

model has an accuracy between 97 and 98% with an F-score of 0.67. These results demonstrate the 

robustness of the classification model, which does not rely heavily on manual intervention 

compared to traditional machine learning (ML) tools and automates the processes of feature 

extraction and gender classification regardless of the position of the pupae in the images. 

 

Keywords: Species Classification, Deep Learning, CNN, Tribolium. Castaneum, Gender 

Identification 
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BACKGROUND 

 

Tribolium castaneum, (Herbst 1797) commonly known as the red flour beetle and belonging 

to the Coleoptera order within the Tenebrionidae family, is a prevalent and destructive secondary 

insect pest that primarily targets stored grains and their derived products. This species exhibits 

sexual dimorphism (Sokoloff 1974; Rees 2004; Mahroof and Hagstrum 2012). Under optimal 

conditions, the developmental time for T. castaneum is approximately five days for eggs, twenty 

days for larvae, and seven days for pupae (Sokoloff 1974; Dawson 1964). Both larvae and adult 

beetles infest stored food and grains, posing a significant threat to agricultural commodities. Hana 
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2013 reported that the damage inflicted by these beetles accounts for a considerable percentage, 

ranging from 7% to 35%, of total agricultural production on an annual basis.  

Nowdays, T. castaneum have gained recognition as a valuable model organism for investigating the 

underlying causes of genetic diseases. Notably, T. castaneum was the first species within the 

Coleoptera order to have its genome sequenced (Richards et al. 2008; Herndon et al. 2020). This 

type of insect species is progressively employed across a diverse array of biomedical investigations, 

covering fields like neurodegenerative ailments (such as Parkinson's disease), the signaling pathway 

for diuretics (which involves the function of vasopressin-like peptide and its receptor), interactions 

between hosts and pathogens (encompassing antagonistic interactions and co-evolution), as well as 

the domains of pharmacology and toxicology (specifically in the analysis of the impacts of 

psychoactive substances) (Denell 2008; Grunwald et al. 2013; Bingsohn et al. 2016; Adamski et al. 

2019). Although there exist certain dissimilarities in cellular characteristics and overall structure 

between humans and the red flour beetles, a multitude of genetic, physiological, and immunological 

traits remain consistent. This conservation renders them a valuable model for investigating diverse 

facets of human biology. T. castaneum’s utilization as a model for practical research extends 

beyond postharvest management, encompassing inquiries into aging, the environment, and pest 

control (Thomson et al. 2014; Wijayaratne et al. 2018). Several studies have been conducted on the 

evolutionary and the pre- peri and post-mating sexual selection behavior of T. castaneum 

(Michalczyk et al. 2010 ).  

The red flour beetle, known for its reddish-brown coloration and three-segmented clubbed 

antennae (Bousquet 1990), exhibits distinct sexual dimorphism. In T. castaneum, differentiation 

between males and females can be established by the presence of genital papillae during the pupal 

stage and sex patches in the bodies of adult insects. This differentiation is applicable to both pupal 

and adult stages. Notably, sex determination is most straightforward during the pupal stage 

(Kramarz et al. 2016). The morphological characteristics of the insect, influenced by both genotype 

and phenotype, indirectly impact the process of gender classification. Female pupae display pointed 

genital papillae, whereas male pupae possess stubby and barely noticeable papillae.  

Accurate identification of the sex of individuals is a crucial initial step in characterizing the 

population. As the sizes of the beetles are very small (3–4 mm), it is difficult to be perceived with 

human eyes. However there is need identify it using microscopic images. Perseverance of large 

number of microscopic images create fatigue to human subjects which will endup in to incorrect 

outcome. This repeated task will be very well handled by machine. Thus machine learning plays a 

very vital role in classification of beetles. There is an urgent need to integrate some fast processing 

techniques to speed up the experiments going on them.  
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Machine learning has emerged as a viable alternative to traditional technical methodologies in 

various domains of science and technology. By leveraging data-driven approaches, machine 

learning techniques offer the potential to expedite the design process, minimize complexity, and 

enhance cost-effectiveness (Simeone 2018).  

Machine learning is a subset of artificial intelligence dedicated to instructing computers in 

the execution of particular tasks, all without necessitating direct, explicit programming. Computers 

are fed structured data and ‘learn’ to become better at evaluating and acting on that data over time. 

A computational framework inspired by the structure of biological neural networks, which forms 

the foundation of the human brain, is commonly denoted as an artificial neural network. These 

networks are capable of effectively processing vast quantities of data. Artificial neural networks 

(ANNs) have been shown to be effective tools for various kinds of tasks, but they also have a 

number of disadvantages. As ANNs to generalize effectively, a lot of labelled training data is often 

needed. Overfitting or low accuracy might result from a lack of data or data with poor quality. 

Neural networks frequently perform the function of “black boxes,” which means they can make 

accurate predictions but cannot be interpreted. The “curse of dimensionality” refers to the 

exponential increase in data required to generalize the machine learning model accurately as the 

number of dimensions or characteristics rises. Additionally, ANN requires features that are 

handmade for model training and testing. 

Very few characteristics enables male and female T. castaneum pupae to be distinguished 

from one another. Because the pupae body is white in colour and has less texture, it is difficult for 

conventional machine learning approaches to correctly recognize it. Female and male pupae 117 

could be distinguished by the size and shape of genital papillae, located anterior to the 118 

urogomphi. Females have larger and finger like papillae whereas males has smaller papillae. To 

overcome this problems we need deep learning network to classify the beetles. Convolution Neural 

Network (CNN) model is used to classify beetls automatically. A Convolutional Neural Network 

(CNN) can comprise tens or even hundreds of layers, with each layer designed to learn and 

recognize different features within an image. During training, every image undergoes filtering at 

multiple resolutions, and the outcome of each convolution is employed as input for the subsequent 

layer. Starting with fundamental attributes such as brightness and edges, these filters can progress 

towards more intricate aspects, ultimately culminating in features that distinctly identify the object. 

Deep learning algorithms, notably convolutional neural networks (CNN), have garnered substantial 

attention due to their capabilities in pattern recognition tasks related to image analysis. Their 

popularity is notably prominent in the field of biological sciences. 

In our proposed study, we aim to devise an intelligent approach utilizing deep learning 

techniques to discern and categorize disparities observed in both species and gender based on 
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microscopic images captured from ventral and dorsal views. This endeavor seeks to contribute to 

the advancement of intelligent systems within the realm of applied research. 

 

Literature survey: 

 

The table 1 (presented below at the end of manuscript) provides a comprehensive overview 

of recent investigations in the field of life sciences, highlighting the diverse applications of machine 

learning models. Predominantly, supervised learning models have been employed to address species 

classification, characteristics detection, and pattern recognition tasks. An array of machine learning 

algorithms, including support vector machines (SVM), logistic regression (LG), random forests 

(RF), gradient boosting (GB), k-nearest neighbors (kNN), decision trees (DT), and deep learning 

(DL), have been employed to achieve these goals. The utilized datasets encompass both publicly 

available resources and researcher-generated collections through sample acquisition. The 

fundamental strategy in constructing classification models entails dividing the dataset into a training 

set for model development and a test set for the purpose of validating and evaluating the model's 

dependability. Accuracy measurements reveal that deep learning variants, including artificial neural 

networks (ANN) and convolutional neural networks (CNN), demonstrate superior robustness 

compared to other classification models. Nevertheless, it is important to acknowledge that the 

accuracy of these models is influenced by certain limitations, such as the quantity and quality of the 

datasets employed, as well as class imbalance, which arises when multiple species classes are 

involved in the classification and identification studies. It is widely acknowledged that there has 

been minimal research conducted so far regarding gender classification using computational 

methods in T. castaneum. In this proposed study, we aim to utilize a CNN-based intelligent 

approach to detect and differentiate gender disparities from microscopic images. This endeavor is 

aimed at contributing to the advancement of intelligent systems within the domain of applied 

research. 
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Table 1.  Summery of features, accuracy, model and limitations 
S. No. Ref No. Features Model Used Accuracy Database Limitations 

1 Themozhi et al. 2019 Automatic feature 
extraction for image 
classification 

Deep CNN model for 
classification 

95.97–97.47% National Bureau of Agricultural 
Insect Resources (NBAIR) 
dataset, Xie1 and Xie2 

Lower accuracy for higher 
mini batch size. 

2 Lee et al. 2021 machine learning model 
developed to diagnose 
malaria by leveraging 
patient-related 
information 

support vector machine, 
random forest (RF), 
multi-layered 
perceptron, AdaBoost, 
gradient boosting 
(GB), and CatBoost 

56.9–85.6% Dataset containing information 
on parasitic diseases as well 
as a broader dataset 
encompassing various other 
diseases gathered from 
patient information found 
within PubMed abstracts 
spanning the years from 
1956 to 2019. 

Datasets utilized have 
small sizes, and they 
incorporate a 
constrained set of 
features without 
undergoing the feature 
selection process. 

3 Safavi et al. 2022 ExtraTreesClassifier 
algorithm for selecting 
important predictive 
features in forecasting 
the disease occurrence 
and artificial neural 
network (ANN) 
algorithm in 
predicting the 
occurrence of LSDV 
infection in unseen 
data 

ExtraTreesClassifier and 
ANN 

97% Data from multiple sources, 
including the Global 
Animal Disease 
Information System of 
FAO (Food and Agriculture 
Organization), 
meteorological data, the 
Gridded Livestock of the 
World (GLW 3) database, 
the GLC-SHARE Beta-
Release v1.0 dataset, and 
the Natural Earth database. 

Study incorporates data 
obtained from inactive 
accounts within 
veterinary facilities 
across different 
countries. The dataset 
comprises a limited 
amount of information 
and is characterized 
by a small number of 
predictor variables 
utilized for analysis. 

4 González-Pérez et al. 2022 Automated categorization 
of mosquitoes based 
on their genus and 
gender by using five 
distinctive features 
extracted from 
wingbeat recordings. 

logistic regression, (LR), 
gradient boosting 
(GB), random forests 
(RF), support vector 
machines (SVM) and 
a fully connected deep 
neural network (DNN) 

Genus classification: 
94.2%, Sex 
classification of 
Aedes: 99.4%, sex 
classification of 
Culex: 100% 

Flight recordings of 4335 
mosquito through a novel 
optical sensor 

Slight overfitting: more 
training samples for 
genus classification 
model 

5 Kirkeby et al. 2021 3 methods for automatic 
classification of insect 
groups 

Fourier transformation of 
wingbeat frequency, 
Random Forest 
Classifier and 3-layer 
Neural network 

80% 10,000 records of airborne 
insects discovered in 
oilseed rape (Brassica 
napus) fields, captured via 
an optical remote sensor 

only 4 species of pests 
considered 



Zoological Studies 64:24 (2025) 
 

7 

6 Pataki et al. 2021 Deep learning model to 
find tiger mosquitoes 
(Aedes albopictus) 
from 7686 citizen-
made mosquito photos 
between 2014 and 
2019 

deep learning model, 
ResNet5026 

96% Mosquito Alert’s curated 
database 

Data size used for testing is 
not optimum. 

7 Kittichai et al. 2021 One stage and two stage 
learning methods for 
classifying species and 
gender of different 
mosquito species 

deep learning model, 
YOLO 

97–98.9% 10564 captured images of 
mosquitos 

small number of images for 
two species in the 
training set. Some 
species are not 
identified through the 
learning methods 

8 Cannet et al. 2022 Automatized identification 
of species of tsetse 
flies using deep 
learning architecture 
and Wing Interference 
Patterns 

CNN 33–100% A collection of 1,766 images 
depicting 23 distinct 
species of Glossina (tsetse 
flies). 

A notably limited quantity 
of images belonging 
to a specific species is 
present within the test 
dataset for WIPs 

9 Lei et al. 2019 3 convolutional layer 
model for identifying 
handwritten digits 

Dilated CNN and HDC 
models 

60–100% MNIST data set 
 

10 Antipov et al. 2016 CNN model for gender 
predication from face 
image 

CNN Ensemble model 96.8–97.3% CASIA Web Face and Labelled 
Faces in the Wild (LFW) 

Number of images in 
CASIA Web Face 
database is excessive 
with respect to the 
number of subjects 

11 Chola et al. 2022 A classification model for 
determining the 
gender of Drosophila 
melanogaster by 
utilizing a 
combination of color, 
shape, and texture 
features. 

support vector machines 
(SVM), Naive Bayes 
(NB), and K-nearest 
neighbour (KNN) 

90% Photographs of Drosophila 
specimens obtained from 
the National Drosophila 
Stock Centre, Department 
of Studies in Zoology, 
University of Mysore, 
India. 

The dataset comprises a 
relatively small 
quantity of images, 
specifically 100 
images categorized 
into two distinct 
classes. 

12 Ozdemir et al. 2022 21 base criteria (keys) for 
classification of insect 
order using deep 
learning models 

SSD MobileNET, YoloV4, 
and Faster R-CNN 
InceptionV3 

67–81% 1500 insect images Image issues can 
deteriorate the 
performance of the 
model. 

13 Rabinovich et al. 2021 Experimental design using 
machine learning by 
taking temperature, 

support vector machine, 
GBMs, Bayesian 
generalized linear 

80% Dataset of 228 insects through a 
combination of 4 features 

Limited size of dataset 
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exposure times, stage 
and sex of adult 
kissing bugs as 
features 

models, linear models 
fitted with ordinary 
least squares 

14 Motta et al. 2019 Autonomous classification 
of adult mosquitoes by 
extracting features 
from the mosquito 
images using CNN 
model 

CNN (LeNet, AlexNet, 
GoogleNet) 

57.5–83.9% 4056 mosquito images extracted 
from ImageNet platform 

Limited number of images 
lead to risk of 
overfitting 

15 Bjerge et al. 2022 Insect Classification and 
Tracking algorithm 
(ICT) for real-time 
classification and 
tracking of insect 
species using 
intelligent camera 
system and deep 
learning model 

deep learning model, 
YOLO 

89% 2121 background images 
without insects and 5757 
images with insects 

Precision of the tracking 
algorithm is highly 
dependent on the 
duration of visibility 
of insects on the 
camera 

16 Zare et al. 2022 Boosting method to train 
classifier and feature 
extraction from 
microscopic images 
for detecting 
leishmaniasis 

Viola-Jones algorithm 83% A dataset encompassing 300 
images extracted from 50 
laboratory slides obtained 
from lesions under 
suspicion of leishmaniasis. 

size of data set is quite low 
and accuracy depends 
on the resolution of 
images 

17 Bellin et al. 2021 Classifier models for 
identifying two 
species of mosquitos 
using geometric 
morphometrics data 
and pairwise 
comparison for feature 
extraction 

support vector machine 
(SVM), random forest 
(RF), artificial neural 
network (ANN) and 
an ensemble model 
(EN). 

73-81% 664 mosquito specimens of 
Maculipennis complex 

The proportion of two 
species in the test set 
is highly skewed 
(training set: 1:1 and 
test set:  24:222) 

18 Markovic et al. 2021 Classifier models to predict 
the appearance of 
insects during a 
season on a daily basis 
using  21 parameters 

K-Nearest Neighbours, 
Support Vector 
Machines, Decision 
Tree, Random Forest, 
Multi-layer Perceptron 
classifier, Ada Boost, 
Gaussian Naive Bayes 
and Quadratic 

75–86.3% Helicoverpa armigera insects 
from 17 locations in the 
northern part of Serbia 
during 2019 and 2020. 

Temperature and humidity 
are the only 
environmental 
parameters considered 
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Discriminant, 
Analysis 

19 Shen et al. 2018 Classifier model for 
detection of stored 
grain insects by 
applying an inception 
structure for 
convolution neural 
network 

R-CNN 88% 12508 images of six different 
species of insect 

Accuracy is highly 
dependent on the 
resolution of insect 
images 

20 Wittek et al. 2022 Supervised machine 
learning predictive 
classifiers for pigeon 
behaviours using 
multivariate time 
series data for 
10,424,241 frames as 
input 

Decision Trees, Random 
Forest 

87% Eight naïve adult homing 
pigeons each receiving 10-
20 sessions 

Absence of filters during 
the implementation of 
machine-learning 
based tracking 
software DeepLabCut 
that resulted in 
tracking glitches and 
instances of 
anatomically 
implausible 
movements observed 
in pigeons during the 
tracking process.. 

21 Borba et al. 2021 Distinguishing taxonomic 
species by analyzing 
morphological, 
morphometric, and 
ecological data from 
capilliards. 

J48, Random Tree, 
REPTree, LMT, 
Majority Voting 

82–97% Samples procured from two 
helminth collections 
associated with institutions, 
containing a total of 28 
distinct species and 8 
different genera. 

Utiilized dataset provides 
only a limited 
representation of the 
actual biological 
diversity observed 
within capillariids. 

22 Abdelaziz et al. 2022 Automated classification of 
vertebrate species 
from the 3D images of 
their remains using 8 
extracted physical 
features 

Support Vector Machines 
(SVM), K-Nearest 
neighbours (KNN) 
and decision tree (DT) 
classifiers 

83.4–93.7% 2052 3D images for three main 
classes 

Models show very high 
training accuracy 
implying that there 
might be issues of 
overfitting. K-Fold 
cross validation is not 
performed. 

23 Patel et al. 2020 Deep learning classification 
of Galápagos Snake 
Species using 6 
external parameters 
extracted from images 

R-CNN 75% 247 images of snakes making up 
9 species 

Dataset size is limited, not 
enough images to train 
the model properly 
and model 
classification is highly 



Zoological Studies 64:24 (2025) 
 

10 

dependent on the 
resolution of images. 

24 Acevedo et al. 2009 Automated classification of 
calls of nine frogs and 
three bird species 
using four standard 
call variables or 
eleven variables that 
included three 
standard call variables 
and a coarse 
representation of call 
structure 

Support Vector Machines, 
Decision Trees and 
Discriminant Analysis 

71.45–94.95% 10,061 isolated calls The model accuracy is 
dependent on the 
species type and call 
frequency 

25 Xie et al. 2016 Acoustic classification 
model of frogs using 
14 features extracted 
from frog call 
recordings 

linear discriminant 
analysis, K-nearest 
neighbour, support 
vector machines, 
random forest, and 
artificial neural 
network 

94–99% Recordings of 24 frog with the 
duration ranging from eight 
to fifty-five seconds 

The accuracy diminishes 
with higher 
background noise 

26 Petrescu et al. 2021 Fear classification model 
using 40 types of 
features from the 
physiological data 

Decision Trees, k-Nearest 
Neighbours, Support 
Vector Machine and 
artificial networks 

91.7–93.5% Peripheral signals from DAEP 
dataset 

Imbalanced classes and 
single self-assessment 
of the emotional status 
for the video extract 

27 Shia et al. 2021 Physical features extracted 
from images for 
unsupervised 
classification of 
malignant tumours in 
breast 

combination of locally 
weighted learning 
(LWL) and sequential 
minimal optimisation 

84.70% 677 US images Smaller dataset, clinical 
limitation of the 
application and biases 
associated with the 
observers 

28 Lapp et al. 2021 Automated call recognition 
method for frog calls 
and choruses using 9 
parameters 

RIBBIT (repeat interval-
based bioacoustic 
identification tool) 
classifier 

90% 70 Audio files Smaller dataset and 
accuracy dependent on 
heavily overlapping 
choruses, background 
noise and other 
species with similar 
vocalizations 

29 Bisgin et al. 2018 Species identification of 
beetles based on 3 sets 
of image features 

SVM, ANN 80–85% set of 6900 images of 15 species 
of beetles 

Limiting number of 
specimen images per 
species, quality of 
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images and difficult 
pairs due to high 
entomological 
similarities 

30 Zhu et al. 2021 Neural network for 
identification of 3 
specific types of 
promoters in DNA 
sequence of species 
including Homo 
sapiens, Mus 
musculus, Drosophila 
melanogaster and 
Arabidopsis thaliana 

Capsule neural network 80–98% promoter sequences for four 
different species from the 
EPDNew database 

Validity of model is 
compared against 
independent dataset 
that are subjected to 
continuous updating, 
the other tools 
selected for 
comparison only 
focusses on single 
species and most 
approaches do not 
identify all the 
promoters properly 

31 Bisgin et al. 2022 Automated recognition 
through elytral pattern 
of food-contaminating 
beetles 

CNN 90% 27 species of beetles collected 
from U.S. 
Department of 
Agriculture’s (USDA) 
Animal and Plant Health 
Inspection Service (APHIS) 
laboratory 

Accuracy dependent on 
better resolution and 
higher number of 
images for training set 

32 Tannous et al. 2023 Automated identification of 
insect species using 
feature pyramid 
extracted from images 
with 3 different 
resolutions and scales 

CNN 93% 1826 images of 2 species of 
insects 

Small sized and 
morphologically 
similar insects are 
difficult to identify 

33 Loti et al. 2021 Machine learning based 
automated 
identification of chili 
pest and disease in 
leaves using features 
extracted through 6 
deep learning tools 

support vector machine 
(SVM), a random 
forest (RF), and 
artificial neural 
network (ANN) 

49-–92% 974 images of leaves Small number of testing 
samples of 2 classes, 
loss of certain features 
during feature 
extraction process and 
patterns of 
discoloration 

34 Veiner et al. 2022 Analyzing transcriptomic 
patterns and 
identifying genes 
linked to the honeybee 
waggle dance by 

Support Vector Machine 
(SVM), Random 
Forest (RF), 
Generalized Linear 
Model (GLMNET) 

66.7–100% 15314 gene counts of whole 
honeybee genome across 
32 bees 

Small size of training and 
test set 
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employing the top 20 
gene features for 
characterization. 

35 Gupta et al. 2023 Data augmentation with 
deep learning 
methodology for 
automatic 
identification of castor 
pest insects 

convolutional neural 
networks VGG16, 
VGG19, and 
ResNet50 

71.2–82.18% Dataset of 372 images organized 
into six different insect pest 
classes 

Data unbalancing 
(disproportionate 
number of species in 
dataset for 
classification) 

36 Aladhadh et al. 2022 Pest detection using a deep 
learning framework 
using cross stage 
partial network (CSP) 
for feature extraction 
from insect images 

CNN, Faster RCNN, 
YOLO-5 

57.3–98% Ants class: 392 images, 
grasshopper class: 315 
images, palm weevil class: 
48 images, shield bug class: 
392 images, and wasps’ 
class: 318 images 

Disproportionate number of 
insect classes in the 
training and test 
datasets 

37 Liu et al. 2022 Automated recognition of 
tomato pests using 
deep learning model 
implementing Triplet 
Attention Module 
(TAM) for feature 
extraction 

Deep learning model 
YOLOv4-TAM 

95% 2,893 images of induced plate 
pests collected from 
Shouguang tomato 
greenhouse 

Image quality affects the 
accuracy and detection 
of anchor boxes that 
correspond to the pest 
dataset 

38 Alsanea et al. 2022 Autodetection model for 
red palm weevil using 
region-based CNN to 
extract the features to 
enclose image with 
the bounding boxes 

convolutional neural 
network (R-CNN) 

99% 6000 images generated from 
available 300 images using 
data augmentation 
techniques 

Non-availability of the 
dataset for the 
proposed model, 
dataset too small for 
the robust model 
creation 

39 Dai et al. 2022 Autodetection of citrus 
psyllids using deep 
learning method by 
implementing High-
resolution network 
(HRNet) for feature 
extraction from the 
images 

Cascade region-based 
convolution neural 
networks (R-CNN) 

89% Dataset comprising of 500 high-
definition sample images of 
plants sourced from the 
Citrus HLB Test Base at 
South China Agricultural 
University. 

Small target detection 
range of citrus psyllid 
in the image 

40 Spiesman et al. 2021 classification and 
identification of 
various bumble bee 
species using images 
by applying deep 
learning model 

Deep learning models 
ResNet, Wide ResNet, 
InceptionV3, and 
MnasNet 

85.8–91.7% 120,000 images belonging to 42 
species of bumble bees 

Significant fluctuations in 
error rates for species 
with limited sample 
sizes, primarily due to 
the extent of 
differences within the 
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same species and their 
distinct characteristics 
from other species. 

41 Zhao et al. 2022 automatic recognition of 
mosquito species by 
implementing an 
identification model 
based on the Swin 
Transformer 
architecture 

Convolutional neural 
network (CNN) 
models 

80–100% 9,900 mosquito images covering 
7 genera and 17 species 

Lack of images of 
particular sex of some 
mosquito species lead 
to unbalanced dataset 
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The following table offers a comprehensive overview of recent investigations conducted in 

the field of life sciences (Table 1), highlighting the various applications of machine learning 

models. Primarily, supervised learning models have been utilized to address tasks such as species 

classification, characteristics detection, and pattern recognition. To achieve these objectives, a 

variety of machine learning algorithms, including support vector machines (SVM), logistic 

regression (LG), random forests (RF), gradient boosting (GB), k-nearest neighbors (kNN), decision 

trees (DT), and deep learning (DL), have been implemented. The datasets used encompass both 

publicly available resources and collections generated by researchers through sample acquisition. 

The fundamental approach to developing classification models involves partitioning the dataset to 

create a training set for model training and a test set for the purpose of validating and assessing the 

model's credibility. Accuracy measurements indicate that deep learning variants, such as artificial 

neural networks (ANN) and convolutional neural networks (CNN), exhibit superior robustness 

compared to other classification models. 

Researchers have employed various machine learning and deep learning classification 

models to study insects and pests. For example, Kirkeby et al. 2021, utilized three different methods 

to classify insect groups and achieved an impressive accuracy rate of 80%. Chola et al. 2022, 

employed classical machine learning methods to classify the gender of Drosophila melanogaster, 

achieving a maximum accuracy of 90%. Rabinovich et al. 2021, used machine learning models for 

experimental design, testing the thermal limits of kissing bugs and achieving an accuracy of 80%. 

Veiner et al. 2022, employed Support Vector Machine (SVM), Random Forest (RF), and 

Generalized Linear Model (GLMNET) to characterize and identify genes associated with honeybee 

waggle dance, achieving accuracy levels ranging from 67% to 100%. Perez et al. 2022, utilized a 

deep neural network to classify mosquitoes by genus and sex, achieving an accuracy exceeding 

94%. Similar studies were conducted by Pataki et al. 2021; Kittichai et al. 2021; Motta et al. 2019 

Bellin et al. 2021; and Zhao et al. 2022, who used deep learning models such as ResNet5016 and 

YOLO, as well as neural network models like ANN and CNN, to classify mosquito species based 

on insect images. These studies achieved accuracies ranging from 54% to 100%. Themozhi et al. 

2019 and Aladhadh et al. 2022, applied CNN models to classify and detect crop pests using images, 

achieving accuracy levels higher than 95%. Liu et al. 2022, used a deep learning model to classify 

tomato pests from a collection of images, achieving an accuracy of 95%. Additionally, researchers 

have employed faster deep learning models like R-CNN for classifying various insects. Ozdemir et 

al. in 2022 used R-CNN to identify key indicators for insect classification, achieving an accuracy of 

over 80%. Shen et al. in 2018 and Alsanea et al. in 2022 applied the R-CNN classification model to 

images of stored grain insects and for the auto-detection of red palm weevil, respectively, resulting 



Zoological Studies 64:24 (2025) 
 

15 

in accuracy levels of 88% and 99%. Bisgin et al. 2022 and Tannous et al. 2023, utilized CNN 

models for automated identification of food-contaminating beetles and insect species, achieving 

accuracy levels of 90% and 93%, respectively. Dai et al. 2022, employed cascade region-based 

convolutional neural networks (R-CNN) for the autodetection of citrus psyllids from images with an 

accuracy level of 89%. Aladhadh et al. in 2022 applied CNN and faster R-CNN models for the 

autodetection of pests from insect images with accuracy levels between 57% and 98%. 

In addition to species classification studies, machine learning and deep learning models have 

also been applied in various other biological studies. Lee et al. 2020, used support vector machines, 

random forest (RF), multi-layered perceptron, AdaBoost, gradient boosting (GB), and CatBoost 

models for malaria diagnosis and achieved accuracy levels between 56.9% and 85.6%. Safavi et al. 

2022, employed ExtraTreesClassifier and ANN models for forecasting and predicting the 

occurrence of LSDV infection, achieving a highest classification accuracy of 97%. Zare et al. 2022, 

applied a boosting method to train classifiers and extract features from microscopic images for 

detecting leishmaniasis with an accuracy level of 83%. Petrescu et al. 2021, used decision trees, k-

nearest neighbors, support vector machines, and artificial neural network models for fear 

classification from physiological data, with accuracy levels between 91.7% and 93.5%. Shia et al. 

2021, employed a combination of locally weighted learning and sequential minimal optimization 

for unsupervised classification of malignant breast tumors, achieving an accuracy level of 84.7%. 

Deep learning methods have been applied by Antipov et al. 2016 and Patel et al. 2020, who used 

CNN ensemble and R-CNN models for gender prediction from face images and classification of 

Galápagos Snake Species, with accuracies greater than 96% and 75%, respectively. Zhu et al. 2020, 

applied neural network models for the identification of three specific types of promoters in the 

DNA sequences of species including Homo sapiens, Mus musculus, Drosophila melanogaster, and 

Arabidopsis thaliana, with classification accuracy ranging from 80% to 98%. 

However, it is important to acknowledge that the accuracy of these models is influenced by 

certain limitations, such as the quantity and quality of the datasets used, as well as class imbalance 

that occurs when multiple species classes are involved in classification and identification studies. 

It is well established that the realm of gender classification through computational means in T. 

castaneum remains significantly underexplored. Given the minute sizes of these beetles, human 

classification becomes challenging, necessitating the fusion of image processing and machine 

learning techniques to facilitate species and gender identification, which could speed up the ongoing 

experiments on them.  Here, in this planned work, a machine learning-driven intelligent 

methodology is developed by utilizing microscopic images (from ventral and dorsal viewpoints) to 

discern and categorize gender disparities. The ultimate objective is to foster the development of 

intelligent systems within the applied research domain 
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MATERIALS AND METHODS 

 

Insect rearing and image Acquisition 

 

The primary T. casteneum culture was procured from ROSS Lifescience Pvt. Ltd., Pune. It 

was thereafter cultured in wheat adding 5% yeast at the Zoology department of Savitribai Phule 

Pune University in an ideal environment at 33 ± °C and 70% relative humidity in a BOD incubator 

(Halliday et al. 2014). Images of T. castaneum at the pupal stage were acquired using digital stereo 

microscope (Nikon SMZ1270) and MIchrome 6 (6MP) color microscopic camera. The microscopic 

picture dataset comprises a total of 116 photographs of pupae of two distinct sexes, male and 

female, with each class including 58 images. These photos were taken from both the dorsal and 

ventral sides using constant angle and magnification (40X) with a dark background. Figure 1a–d 

shows representative photos of male and female T. castaneum pupa. In this study, machine learning 

model is train and tested with image size 128 × 128 × 3. 

 

 
Fig. 1.  Specimen photographs of T. castaneum pupae under the microscope. a) and b) ventral and 

dorsal view of female pupa, c) and d) ventral and dorsal view of male pupa.   
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Methodology 

 

The methodology for the proposed study is depicted in figure 2. The prepared images, as 

discussed in previous sections, are given as input to a deep neural network. A total of 116 original 

images were used in this study. To improve model generalization, data augmentation was applied. 

Each training image was augmented using techniques such as rotation, horizontal and vertical 

flipping, zooming, and brightness adjustments, resulting in 10 augmented versions per image. This 

expanded the dataset to a total of 1,160 images. The dataset was then split into training and testing 

subsets, with 70% of the images used for training the network and 30% used for evaluating its 

performance.  The trained network classifies the images as male and female pupae. Since the 

algorithm deals with the classification of the pupae, a Convolutional Neural Network (CNN) is 

applied, which relieves us from the need to locate the pupae in the given image and focuses on 

recognizing the gender of the pupae. The important feature of CNN is obtaining the abstract 

features as the image propagates through the deeper layers of the network. Each image is expressed 

as 128 × 128 matrix. 

 

 
Fig. 2.  Architecture of the proposed model. 

 

The first step of the CNN is defining the convolutional layer. Each image matrix is defined 

with a kernel, which is a set of random numbers also called kernel weights. These weights are 

adjusted during each training cycle, allowing the kernel to extract significant features. In the applied 

algorithm, the kernel is of size 2-D (e.g., 2 × 2). The kernel slides over the complete given image 

matrix, and the corresponding values are multiplied and summed to create a single scalar value. 

The next layer is the pooling layer, which reduces the feature map generated by the convolutional 

layer. The commonly used algorithms for the pooling layer are max pooling, min pooling, and 

Global Average Pooling (GAP). The applied algorithm works on the max 2-D pooling algorithm. In 

the max pooling layer, a small window (typically 2 × 2) slides across the feature map, and for each 

window, the maximum value is selected to create a downsampled (pooled) feature map. Following 

this, the Rectified Linear Unit (ReLU) activation function is applied to introduce non-linearity by 
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replacing all negative values with zero. This function returns zero if the input is negative or the 

value itself. 

Following this, a fully connected layer is designed as the final layer of the CNN network. In this 

layer, each neuron is connected to all the neurons of the previous layer. The input to the fully 

connected layer comes from the last pooling or convolutional layer, and its output represents the 

final output of the CNN. 

We chose to develop this model to overcome the problem of overfitting for this specific test 

case scenario. During the early stages of the development of the solution to the problem we tried to 

implement VGG16 architecture but faced a serious problem of overfitting, as the image was 

microscopic and had fine details which were not necessarily needed for the dectection problem as 

seen in Figure 1. Hence a simpler CNN model proved to be higher performing than more denser 

models. The architecture of the CNN model includes three convolutional layers followed by max-

pooling layers, with the first layer having 32 filters, the second layer having 64 filters, and the third 

layer having 128 filters, all using a 3 × 3 kernel size and ReLU activation. Each convolutional layer 

is followed by a 2 × 2 max-pooling layer to reduce the spatial dimensions. After the convolutional 

and pooling layers, the output is flattened and passed through a fully connected dense layer with 

128 units and a ReLU activation function, followed by a dropout layer with a dropout rate of 0.5 to 

prevent overfitting. We use binary cross entropy as loss function with batch size of 32 which 

provided us with good number of gradient updates. Figure 2 depicts the detailed architecture of the 

model. The final output layer uses a softmax activation function to classify the images into the 

respective categories. This architecture allows the model to learn complex patterns in the images 

while mitigating overfitting by incorporating dropout and appropriate pooling operations. Reffer to 

figure 3 for the representation.  
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Fig. 3.  Procedure and filters for CNN model. 

 

 

RESULTS 

 

As discussed in the methodology, the first step in identifying key factors for pupal gender 

classification was the design and implementation of a convolutional layer. The employed model 

was trained on 812 images in the training dataset and validated and tested on 348 images in the test 

dataset. To minimize the risk of overfitting with a limited dataset, all images were resized to a 

resolution of 128 × 128 × 3. This reduction in resolution decreased the input dimensionality, 
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effectively lowering the model’s complexity. Additionally, the resizing process enhanced key 

morphological features by creating a zooming effect, allowing the network to focus on more 

prominent and consistent traits rather than fine-grained noise, which can contribute to overfitting in 

small datasets. While this approach improved the model’s generalization capability, future work 

will include the application of interpretability techniques such as Grad-CAM to further validate that 

the CNN is attending to biologically meaningful regions within the images. 

Extracted features by the CNN were passed to a dense network to classify the sex of the 

pupae. Experimental results showed a high classification accuracy. Notably, it was observed that 

reducing the image resolution improved the model’s ability to differentiate key features. The model 

was implemented using the TensorFlow library in Python, requiring only 8 MB of memory. It was 

trained and tested on an Nvidia RTX 3060 using Keras version 3.0.5, CUDA version 11.2, and 

cuDNN version 8.1, which facilitated efficient processing and inference. 

This overall configuration led to a classification accuracy between 97% and 98%, as 

illustrated by the accuracy and loss plots in figure 4. The model also achieved an F-Score of 

approximately 0.96 (Fig. 5). These results demonstrate the effectiveness of the proposed model for 

real-time, automated classification of T. castaneum pupae. A comparison of the model’s 

performance with other state-of-the-art techniques is provided in table 2. 

 

 
Fig. 4.  Plots of accuracy and loss of employed model. 
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Fig. 5.  Confusion matrix for the deployed model. 

 

Table 2.  Comparison of results between proposed and other state of the art methods 
S. No. Ref No. Model Used Accuracy Database 

1 Themozhi et al. 2019 Deep CNN model for 
classification 

95.97–97.47% 40 pest types from field crops 

2 Cannet et al. 2022 Convolutional neural 
network (CNN) 
models 

33–100% Glossina spp. (tsetse flies) 

3 Tannous et al. 2023 Convolutional neural 
network (CNN) 
models 

93% The Mediterranean fruit fly 
Ceratitis capitata, and 
the olive fruit fly 
Bactrocera oleae 

4 Alsanea et al. 2022 convolutional neural 
network (R-CNN) 

99% Rhynchophorus ferruginous 

5 Dai et al. 2022 Cascade region-based 
convolution neural 
networks (R-CNN) 

89% Citrus psyllid 

6 Zhao et al. 2022 Convolutional neural 
network (CNN) 
models 

80–100% Ae. vexans, Coquillettidia 
ochracea, Mansonia 
uniformis, An. vagus and 
Toxorhynchites splendens 

7 Proposed methodology Convolutional neural 
network (CNN) 
models 

97–98% Tribolium castaneum 

 

 

DISCUSSION 

 

We have already comprehensively discussed the use of deep learning algorithms for species 

identification in the literature survey section, so we are excluding that information in this section to 

avoid repetition and considering only CNN-based methods that are similar to our study. Themozhi 

et al. (2019) classified and detected 40 different crop pests using photos with greater than 95% 

accuracy. Tannous et al. (2023) and Cannet et al. (2022) used CNN models to automatically identify 

Glossina spp. (tsetse flies) and food-contaminating beetles, respectively, with accuracy levels of 

93% and 3–100%. Alsanea et al. (2022) achieved accuracy values of 99% by applying the R-CNN 

classification model to photos of stored grain insects and for the auto-detection of red palm weevils, 

respectively. Cascade region-based convolutional neural networks (R-CNN) were used by Dai et al. 

(2022) to recognize citrus psyllids from photos with an accuracy of 89%. Zhao et al. (2022) 

classified mosquito species based on insect pictures using deep learning models like ResNet5016 

and YOLO as well as neural network models like CNN. Compared with these results, our 

experimental set up network performed well with accuracy 97–98% and F1 score 0.67. 

Nevertheless, identification of gender of pupae in given image challenges minute level feature 
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extraction. The employed network result indicate that cutting-edge systems for tracking the 

dynamics of pests populations can be created using machine learning methods. This investigation of 

the population dynamics of important pupae may encourage the creation of novel methods based on 

a field-based distributed network of automatic monitoring system. This would improve the 

effectiveness and sustainability of control efforts. With little data pre-processing and a similar 

design, this approach can be applied to other species of interest. 

 

 

CONCLUSIONS 

 

This finding can be used in ecological and entomological study as well as a variety of 

developmental research projects in which determining the gender of T. castaneum will be needed. 

Automation of current process helps to minimise the efforts and time in sex-specific categorisation 

of  T. castaneum beetles with 97–98% accuracy. To compensate for the lost characteristics in the 

photographs and attain more accuracy, we intend to further improve our algorithm by including 

Image Enhancement techniques in future. 

 

List of abbreviations 

 

ML, Machine learning.  

AI, Artificial Inteligence. 

ANN, Artificial neural network. 

DL, Deep learning.  

CNN, Convolution neural network.  

ReLU, Rectified Linear Unit. 

GAP, Global Average Pooling. 

NBAIR, National Bureau of Agricultural Insect Resources. 

RF, Random forest. 

GB, Gradient boosting (GB). 

FAO, Food and Agriculture Organization. 

LR, Logistic regression. 

SVM, support vector machines (SVM). 

DNN, Deep neural network. 

NB, Naive Bayes. 

KNN, K-nearest neighbour. 
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RIBBIT, repeat interval-based bioacoustic identification tool. 

GLMNET, Generalized Linear Model. 
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