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Climate change and biological invasions have had significant impacts on ecosystems and
biodiversity. To assess how environmental changes affect two key invasive snails- Pomacea
canaliculata and Pomacea maculata- in East Asia, we built species distribution models (SDMs) and
ecological niche models. These apple snails (Gastropoda: Ampullariidae) have negatively impacted
ecosystems and human health. Understanding their distribution is crucial for containing invasions
under current and future climates. Our findings indicate that these two species occur primarily in
China and Japan but occupy different suitable habitats, and the highly overlapping niches suggest
interspecific competition. P. canaliculata is more adaptable extreme environments. The projections
show that the sustainable development pathway (SSP126) best limits these invaders by suppressing
reproduction and dispersal. This study provides predictive information that can be utilized to reduce
the invasiveness and spread of these two Pomacea species. To prevent further increases in suitable

habitat, control measures should be taken as early as possible.
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BACKGROUND

Climate change and biological invasions significantly impact biodiversity (Secretariat of the
Convention on Biological Diversity 2014; Theobald et al. 2015). Numerous studies have
demonstrated that climate change will have profound effects on the spatial distribution of alien
invasive organisms (Hellmann et al. 2008; Godoy et al. 2011; Zettlemoyer et al. 2019). For
example, when future climate conditions are considered, invasive ants (Linepithema humile) will
likely adapt to higher latitudes (Li et al. 2022). Climate change may also exacerbate the threat posed
by the sultana borer (Cadra figulilella) to fresh and dried fruits (Wang et al. 2023). Additionally,
climate change is causing an expansion in the geographical range of the Corbicula fluminea
(McDowell et al. 2014). Invasive species have become a global issue due to intercontinental trade
(Seebens et al. 2021; Diagne et al. 2021); therefore, understanding the effects of climate change on
the dissemination of invasive organisms is needed to stabilize ecosystems, control pests, conserve
biodiversity and promote the health of all organisms, including humans (Sun et al. 2024).

The Pomacea species complex (Gastropoda: Ampullariidae) is harmful to rice production but
also impacts the ecological landscape. Pomacea spp. harbor the nematode Angiostrongylus
cantonensis and neurotoxins in the yolk glands of female apple snails pose a threat to human health
(Cowie 1998; Frassa 2010). Pomacea species are especially damaging in tropical and subtropical
geographic regions where the environment fosters their population growth (Cowie 2002). The apple
snails, Pomacea canaliculata and Pomacea maculata, are two main invasive cryptic species (Hayes
et al. 2012), which are morphologically indistinguishable but reproductively isolated. Furthermore,
P. canaliculata is regarded as one of the top 100 invasive species worldwide (Luque et al. 2014).

Both species have rapidly spread throughout agricultural production regions, causing significant
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damage (Hayes et al. 2010; Liu et al. 2019). Furthermore, Yang and Yu (2019) identified a new
species of P. occulta in China, which is distributed in the Zhejiang and Fujian Provinces.

The species distribution model (SDM) is a crucial tool for predicting the potential habitat
suitability zones of organisms exposed to current or future climates and has been utilized to assess
the risk of alien invasive species (Guisan and Zimmermann 2000; Lamsal et al. 2018). SDM uses
existing distribution data and the environmental factors associated with spread to analyze the
potential distribution of a species in a target area and the significance of the environmental variables
using a jackknife method. The use of existing data and species distributions modelling to guide
fieldwork can reduce the cost of field surveys, reduce the time and cost of large-scale biodiversity
studies of large numbers of species (Kamino et al. 2012; Fois et al. 2018), and combining the two
provides an avenue for policy development at the cutting edge of biodiversity conservation (Mccain
and Colwell 2011). Maximum Entropy (MaxEnt) is widely recognized as the most accurate
modeling method (Elith et al. 2006; Wisz et al. 2008), which is characterized by rapid operation,
high prediction accuracy, and automatic assessment of important environmental factors (Phillips
and Dudik 2008; Phillips et al. 2017). Recently, the impacts of carbon emissions, social
developments and other factors were published by the Coupled Model-based Intercomparison
Project Phase 6 (CMIP6), which considers the biological impacts of socioeconomic pathways (Zhai
et al. 2020).

Previous studies have shown that in Pomacea populations co-existing with P. maculata, P.
canaliculata is generally the dominant species and has a wider dispersal range and exhibits higher
temperature and environmental tolerance (Gao et al. 2022). In China, the two species were often
misidentified due to their extreme morphological similarity. As cryptic species, they exhibit
differences in habits and other traits, yet their accurate differentiation remains challenging, which
has hindered targeted prevention and control efforts. Considering these differences, it is important
to understand differences among the members of the Pomacea species complex in order to
accurately predict and compare suitable habitats (Kwong et al. 2009; Kyle et al. 2013; Bernatis et
al. 2016). In consideration of the limited number of distribution loci for P. occulta, they were not
included in the model construction for this study. In previous studies, Zhou et al. (2018) estimated
the distribution of the Pomacea spp. complex as a single species, rather than the distribution of
different cryptic species; Yin et al. (2022) used MaxEnt to predict only the distribution of P

canaliculata and ignored the distribution data for China, while Zhong et al. (2023) only analyzed
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the distribution of the historical climate data. Similarly, Wang et al. (2024) only predicted the
potential distribution of P. canaliculata. Comparative studies on the two main species of the
Pomacea complex are lacking.

We hypothesize that interspecific differences drive asymmetric range expansion. Therefore, we
investigated the responses of the two species to global climate change, modelled the distribution of
P. canaliculata and P. maculata in East Asia, identified key climatic factors affecting dispersal of
these two species and assessed the impact of climate change on their potential distribution, and the
differences between the two cryptic species in response to climate change and suitable habitats. This
will provide more insights into the dispersal mechanisms of invasive organisms under global
warming and elucidate the impacts of climate change on the ecosystems of these invasive

organisms.

MATERIALS AND METHODS

Study area and data collection

The occurrence of P. canaliculata and P. maculata in East Asia was surveyed using two
sources. First, we collected Pomacea spp. from rivers, ponds, and farmland at various sites
throughout China from 2019-2023 and recorded locations by latitude and longitude. The collected
Pomacea spp. were identified using the method of Wei et al. (2024) to distinguish the two species,
and the results of the identifications are shown in table S1. P. maculata were found in Lianyungang,
Jiangsu Province, Yiyang, Hunan Province, and Xiamen, Fujian Province. Notably, the number of
loci was significantly fewer than that of P. canaliculata. Secondly, occurrence data was obtained
from the Global Biodiversity Information Facility (GBIF, https://www.gbif.org) and used to provide
detailed information on coordinates in East Asia, which are used after checking with existing
reports (Yin et al. 2022; Xue et al. 2022). A total of 2396 and 57 loci were searched for the
occurrence of P. canaliculata and P. maculata, respectively. To minimize deviations among
samples, a single occurrence was placed in individual cells of the grid to match the spatial
autocorrelation and sampling bias of the environmental variable data. After filtering, 306 and 10

occurrence records of P. canaliculata and P. maculata, respectively, remained for modeling (Fig. 1;
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Table S1), which are mainly distributed in southern China and south-western Japan.
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Fig. 1. The infestation of Pomacea spp. and their natural habitat. (a)adult of P.canaliculata; (b)
distribution of occurrence records used in the MaxEnt models of P. canaliculata and P. maculata in
East Asia, the red triangle represents the P. maculata, the green circle represents the P. canaliculata;
(c)natural habitat and host plants of Pomacea spp. in Jiangsu, China.

Environmental variables

Prevailing climate data (1970-2000) were acquired from the World Climate database
(https://worldclim.org/) (Fick and Hijmans 2017) with a spatial resolution of 2.5 km, and the data
contain 19 bioclimatic variables (BIO1-BIO19) (Table S2). Future climate data (20212040, 2041-
2060, 2061-2080, 2080-2100) for East Asia were simulated with the Beijing Climate Center

Climate System Middle Resolution Model (BCC-CSM2-MR) (Yang et al. 2016; Wu et al. 2019; Shi
5
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et al. 2020). These data originate from the latest Coupled Model Intercomparison Project Phase 6
(CMIP6) datasets, integrating Shared Socio-economic Pathways (SSPs) with representative
concentration pathways. Four SSPs were selected including the sustainability path (SSP126), the
moderate path (SSP245), the regional rivalry path (SSP370), and the fossil fuel-driven development
path (SSP585). These pathways were selected as the first choice for future climate information with
high ability to simulate East Asia's temperature (Yang et al. 2016; Wu et al. 2019; Shi et al. 2020).

Bioclimatic variables were transformed using the American Standard Code for Information
Interchange (ASCII), and ArcGIS v. 10.6 (Esri, Redlands, CA, USA) was used to extract data from
the base map of East Asia. Correlation coefficients (R) for these variables were calculated using
ENMtools (http://purl.oclc.org/ENMtools) (Warren et al. 2010). To eliminate possible
multicollinearity between environmental variables, which might affect the accuracy of prediction
and reduce model performance (Thuiller et al. 2008). If two variables were highly correlated (|R| >
0.85), only one was used in the final model (Olson et al. 2014; Lei et al. 2017). A jackknife test was
utilized to assess the importance of variables, and those with contributions lower than 1% were
discarded. GraphPad Prism v. 8 (San Diego, CA, USA) was used for the analysis. The normalized
training gains and the response of each environmental variable in the model were analyzed using
the Microsoft Excel software.

Moreover, incorporating biological traits and historical distribution data of Pomacea snails,
key environmental drivers for their expansion were considered. Laboratory data show 2.1-25.0%
overwinter survival in northern Jiangsu, and field records confirm established populations in Jining,
Shandong (extreme lows: -8°C to -13°C) (Wang et al. 2022). Previous studies identify temperature
and drought as primary factors affecting spread and growth (Matsukura et al. 2009; Gilioli et al.
2017). Therefore, for niche differentiation between two Pomacea species, distinct environmental

factors were selected.

Model building and evaluation

MaxEnt v. 3.4.3 was utilized to predict the distribution of P. maculata and P. canaliculata

under historical and future climates, respectively, due to this software’s ability to ensure model

accuracy even with limited sample sizes (Phillips et al. 2006). Importing species distribution data
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and environmental variable data by calling the MaxEnt software running via Java. The relevant
equations are as follows: Fundamental model equation (1), Where f(x) is the probability density of
species occurrence at environmental variables x; (2) is the normalization constant; i are
coefficients for the i-th feature, estimated via maximum likelihood; fi(x) are the i-th environmental
feature functions, typically including linear, quadratic, and product terms. Model parameters are
solved by maximizing the log-likelihood function (3), Where N is the number of presence points,
and xj denotes environmental values for the j-th presence point. Final suitability probabilities are

transformed via the logistic function (4).

f@) = 52+ oxp (ML B fi () (1)
Z2(B) = [ exp (L B fi(x) ) dx 2)

InL(B) =¥V Inf(x;) — [ f(x)Inf(x)dx 3)

1
1+exp(—1n f(x))

p(x) = 4)

Bootstrapping with 10 repetitions was conducted to determine the reliability of models; 75% of
the records were used to calibrate the models, and the other 25% were used for the final evaluation.
Feature classes used the LQHPT custom combinations. Models were analyzed using AUC (area
under the curve), TSS (true skills statistics), and ROC (receiver operating characteristic curve) to
evaluate the data for both predicted and current climate scenarios (Allouche et al. 2006; Peterson et
al. 2008; Jimenez-Valverde 2012). Given that higher AUC scores indicate stronger reliability, only

models with AUC values greater than 0.8 were included (D’Amen et al. 2011).

Visual and statistical analysis of suitable habitat patterns

The results generated from MaxEnt were imported into ArcGIS 10.6 to evaluate both visual
interpretation and suitability. Values within cells of the grid varied from 0 to 1. We used the Jenks
natural breaks classification method to identify suitable and unsuitable habitats, defining five levels
of habitat suitability accordingly: unsuitable (0-0.25), low suitability (0.25-0.50), general suitability
(0.50-0.75), moderate suitability (0.75-0.90), and high suitability (0.90-1.00), and comparing habitat

suitability for four future climate scenarios with the current suitability area using the spatial analysis
.
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tool SDM Toolbox (http://www.sdmtoolbox.org/) (De Souza et al. 2018; Park et al. 2022).
GraphPad Prism v. 8 (San Diego, CA, USA) was used for the graphing. Furthermore, the direction
and distance of the spatial movement of the centroid migration for the four future climate scenarios
for different periods were measured using the spatial analysis tool, the spatial statistics tool and the
data management tool of the SDM Toolbox in order to predict the overall trend of the distribution of

the two cryptic species (Brown 2014).

RESULTS

Model performance and the value of environmental variables

Using Pearson’s correlation matrix of environmental variables (Fig. 2), the following seven
environmental variables were selected for P. canaliculata and used for modeling: bio2, average
diurnal temperature; bio3, isothermality; bio6, lowest temperature in the coldest month; bio§,
average temperature in the wettest quarter; biol2, annual precipitation; biol5, seasonality of
precipitation; and bio19, precipitation during the coldest quarter. The seven environmental variables
used to model P. maculata were bio2, bio3, bio7, biol0, biol5, biol7 (precipitation during the driest
quarter), and biol8 (precipitation in the warmest quarter).

The MaxEnt models exhibited a high degree of predictive ability and were considered to be
reliable (Fig. S1; Table S3). The jackknife method was used to normalize the training gain of
environmental variables for the two cryptic species (Fig. 3), and the primary factors impacting
suitable habitats for P. canaliculata were the minimum temperature of the coldest month and
precipitation in the coldest quarter (Fig. 4a). In contrast, the principal factors impacting suitable
habitats for P maculata were the mean diurnal range and temperature of the warmest quarter (Fig.
4b).

The response data from environmental factors were combined to generate response curves for
individual factors in an integrated model. For P. canaliculata, the probability of species presence
was greater than 0.5 when precipitation in the coldest quarter exceeded 200 mm; as precipitation
increased, the probability approached 1 and remained stable (Fig. 4a). The probability of presence

gradually increased as the minimum temperature of the coldest month approached 10°C and
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stabilized when temperatures exceeded 20°C (Fig. 4a). With respect to P. maculata, the mean
temperature of the warmest quarter ranged from 27-37°C (Fig. 4b). Furthermore, the probability of

presence gradually decreased as the mean diurnal range reached 6°C; this value became 0 when the

range exceeded 15°C (Fig. 4b).
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Fig. 2. Heatmap showing Pearson’s correlation matrix of environmental variables. Upper left
panel represents P. canaliculata, lower right panel represents P. maculate.
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Fig. 3. Normalized training gains for environmental variables using MaxEnt (a) P. canaliculata,
(b) P. maculata.
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Fig. 4. Response curves of the probability of presence for (a) P. canaliculata: Precipitation of
coldest quarter and Min temperature of coldest month, (b) P. maculata: Mean temperature of
warmest quarter and Mean diurnal range.

Current geographic distributions

The records on the distribution of P. canaliculata and P. maculata were diverse, indicating that
suitable habitats and ecological niches are also likely different. Consequently, suitable habitats for
the two species were predicted using current climatic conditions in East Asia (Fig. 5). The
distribution of both P. canaliculata and P. maculata are primarily concentrated in the southern and
southeastern regions of China, southern South Korea, and southern and southeastern Japan. The
suitable habitats for P. canaliculata and P. maculata in East Asia were determined to be 204.08 x
10° km? and 212.72 x 10° km?, respectively. The highly suitable habitats for P. canaliculata were
located in Taiwan, Shanghai, and Shizuoka and covered an area of 16.57 x 10° km?. Moderately
suitable habitats were 43.17 x 10° km?; these habitats were primarily located in Guangdong,
Guangxi, Kyushu and Nagoya. The most suitable habitats for P. maculata encompassed 37.55 x 10°
km?; these habitats were located in Hainan, Guangxi and Guangdong. Moderately suitable habitats
covered 39.98x10° km?; these habitats were located in Chongqing and Anhui. Unsuitable habitats

for P. canaliculata and P. maculata were 1003.24 x 10° km? and 994.60 x 10° km?, respectively, and
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were located in northeastern, North and northwestern China, South Korea, North Korea and

Mongolia (Fig. 5).
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Fig. 5. Current data showing suitable habitats for (a) P. canaliculata and (b) P. maculata, red
represents high suitable habitat, blue represents moderate suitable habitat, green represents general
suitable habitat, orange represents low suitable habitat and grey represents unsuitable habitat.

Potential geographic distributions under future climate conditions

The potential dissemination of P. canaliculata and P. maculata were projected using future
climate scenarios and a global climate model that is appropriate for East Asia (Figs. 6—8). Using
SSP, the two cryptic species exhibited distinct dispersal characteristics. The climate scenarios
impacted suitable habitats at different times, and many areas were predicted to become moderately
or highly suitable as dissemination occurred over time. With the SSP370 path, both P. canaliculata
and P. maculata will reach their maximum suitable area in the 2090s. The most stable, suitable
habitats for P. canaliculata were predicted for SSP126 and SSP370 (Fig. 6). P. maculata is expected
to expand into suitable areas located in Guangxi, Hunan, and Jiangxi, as well as regions in northern
Xinjiang in China and Japan. SSP245 and SSP370 are more suitable for stable population growth of
P. maculata, whereas SSP126 will become less suitable over time (Fig. 7).

P. maculata had a greater habitat suitability than P. canaliculata, particularly in Shandong,
parts of Hebei, and a small part of Xinjiang; the other potential habitat suitability zones largely
overlapped. Under different SSP, Highly and moderately suitable areas for P. canaliculata were
13.82 x 10° km? — 22.67x10° km? and 25.64 x 10° km? — 57.61 x 10° km?, respectively. For P
maculata, highly and moderately suitable habitats were 28.78 x 10° km?-36.13 x 10° km? and 29.86

x 10° km? — 39.70 x 10° km?, respectively. The number of highly and moderately suitable areas for
11
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P. maculata is 2.08—1.59- and 1.16-0.69-fold larger than P. canaliculata, respectively (Fig. 8).
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Fig. 6. Changes in the potential distribution of P. canaliculata in East Asia from 2021 to 2100
under four shared socioeconomic pathways (SSPs), red represents high suitable habitat, blue
represents moderate suitable habitat, green represents general suitable habitat, orange represents
low suitable habitat and grey represents unsuitable habitat.
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Fig. 7. Changes in the potential distribution of P. maculata in East Asia from 2021 to 2100 under
four shared socioeconomic pathways (SSPs), red represents high suitable habitat, blue represents
moderate suitable habitat, green represents general suitable habitat, orange represents low suitable
habitat and grey represents unsuitable habitat.
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Fig. 8. The proportion of suitable habitats in response to historical and future climate change
scenarios in East Asia. Panels: (a) P. canaliculata; (b) P. maculata, red represents high suitable
habitat, blue represents moderate suitable habitat, green represents general suitable habitat and
orange represents low suitable habitat.

Centroid migration patterns
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The centroids of potential suitable areas for P. canaliculata and P. maculata in East Asia were
examined using current and future climate scenarios, and the results indicate potential shifts in
distribution of the two species with respect to time and climate change (Fig. 8). Under current
climate conditions in East Asia, the centroid of suitable areas for P. canaliculata was located in
Hangzhou City, Zhejiang Province (114.04°E, 27.56°N) (Fig. 9a), whereas the centroid for P,
maculata was located in Pingxiang City, Jiangxi Province (119.81°E, 29.78°N) (Fig. 9b). When
future climate scenarios are considered, the suitable areas for P. maculata move northward and to
higher latitudes, and centroid migration occurs around 2021-2040 under the SSP245, SSP370, and
SSP585 scenarios. For P. canaliculata, migration was predicted to occur in different directions and

distances for each period, with the farthest distance under SSP370.
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Fig. 9. Changes in centroid migration in East Asia from 2021 to 2100 under four shared
socioeconomic pathways (SSPs). Panels: (a) P. canaliculata and (b) P. maculata, black represents
the centroid of current climate data, red represents SSP126, green represents SSP245, blue
represents SSP370 and orange represents SSP585.
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DISCUSSION

This study leverages the robust predictive performance of the MaxEnt model to explore and
compare the distribution dynamics of P. canaliculata and P. maculata in East Asia, yielding findings
with important implications for understanding their invasive potential. MaxEnt was selected for its
proven reliability in species distribution modeling, particularly its ability to generate biologically
meaningful predictions even with limited occurrence data—a strength validated by Pearson et al.
(2007) and Elith et al. (2006), who demonstrated its powerful predictive capacity even for sample
size as small as five. We modeled each species separately to account for their unique climatic
niches, a critical step given the distinct distribution ranges often exhibited by closely related
invasive taxa (De kort et al. 2021). While both species are already established invaders in China and
Japan, our results highlight key uncertainties in P. maculata’s future potential distribution under
climate change--uncertainties that the MaxEnt framework helps clarify despite data limitations.
Consistent with expectations, P. canaliculata’s predicted distribution aligns well with current survey
records, reinforcing model validity. For P. maculata, the model identified a broader range of
suitable habitats than observed to date, a pattern consistent with ecological niche theory (Hirzel et
al. 2002; Soberon and Peterson 2005), where models often reflect fundamental niches rather than
realized distributions constrained by dispersal or biotic interactions. Most importantly, our analysis
reveals that while P. canaliculate and P. maculata share extensively overlapping suitable habitats in
East Asia, they exhibit striking differences in habitat suitability gradient—particularly in the spatial
configuration of low, moderate, and highly suitable areas (Fig. 6 and Fig. 7). These differences
likely stem from divergent adaptive traits, underscoring the need for species-specific management
strategies (Cheng and Sha 2017).

Although P. canaliculata adult snails overwinter in the mud and become active when
temperatures are favorable (Gilioli et al. 2017). Model-based projections further identify
temperature and precipitation as dominant drivers of their geographic distribution (Zhong et al.
2023; Wang et al. 2024). Our study shows that the minimum temperature during the coldest month
is a significant climatic factor that affects the distribution of P. canaliculata (Fig. 4a), which is
consistent with previous research and helps explain why these species cannot survive annually in
northern regions like Beijing and Shandong (Lv et al. 2011; Lei et al. 2017; Zhong et al. 2023).

However, it remains possible that P. canaliculata possesses improved its cold tolerance and
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supercooling ability through constant domestication in response to low temperature, which may
have fostered its continuous, northward spread. Additionally, global warming may also play a role
in northward movement due to increases in winter temperatures and a shift from wet to dry
conditions in some areas (Pasiecznik et al. 2003). From our observations that P. canaliculata can be
active in arid regions but cannot survive in dry environments for extended periods since
precipitation is a crucial climatic factor that affects its distribution (Glasheen et al. 2017). Generally,
P. canaliculata is more likely to survive in warm, wet areas; however, the centroid migration
pathways of suitability zones for P. canaliculata are very complex and variable when considering
future climate scenarios (Dumidae et al. 2021; Wang et al. 2024).

Seven climatic factors were screened to construct the distribution model of P. maculata, and
the contribution and importance of the average temperature during the warmest quarter and mean
diurnal range was 100%, while the contribution and importance of other climatic factors was 0%
(Fig. 2 and Fig. 3). Therefore, the main factor affecting the distribution of suitable habitats for P
maculata is temperature. We also observed that survival rates for P. maculata decreased as
temperature differences increased, and the survival rate was zero when temperature differences
exceeded 15 °C (Fig. 4b). This is explaining why P. maculata finds suitable habitats in southeastern
China and a small part of Xinjiang Uygur Autonomous Regin, but it can be concluded that it will
not spread to Xinjiang unless artificially introduced. Its distribution is limited due to its weak
adaptability, which is consistent with the dominance of P. canaliculata (Gao et al. 2022). While
Zhong et al. (2023) identified temperature and precipitation as key factors, this discrepancy
underscores the imperative for expanded datasets to validate distribution mechanisms. Until the end
of the 21st century, the centroid migration paths for P. maculata will continue to spread northward
under the SSP245, SSP370, and SSP585 scenarios. This suggests that global warming will
significantly impact the distribution of P. maculata, and the invasiveness of P. maculata will
become more severe as greenhouse gas emissions increase (Fig. 9).

The northward migration of the two species may breach original geographical barriers, such as
low-temperature thresholds (Stralberg et al. 2017). This discovery is the way for subsequent
molecular research: by screening target genes that regulate low-temperature responses (Liu et al.
2018), blocking their adaptive capacity in cold regions through gene interference or gene drive
technologies to achieve precise control. The colonization of Pomacea spp. in regions above -10°C

requires niche overlap analysis for northern aquatic ecosystems (Yoshida et al. 2014; Deaton et al.
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2016). Native snails in northern waters have strong cold adaptability but weak competitiveness, and
northward migration of Pomacea may compress native species' ecological niches (Yin et al. 2022).
This ecological risk extends beyond biodiversity degradation and agricultural losses, further
necessitating systemic overhauls of management strategies. These overhauls require substantial
human, material, and financial investments--particularly for establishing interagency coordination
mechanisms, developing advanced monitoring technologies, and redesigning policy frameworks.

We employed MaxEnt exclusively to construct this model, which primarily relies on climatic
variables for predictions. This decision was based on two key considerations. First, the Pomacea
species complex are invasive omnivores that lack effective natural enemies in East Asia,
minimizing the influence of top-down biological control (e.g., predation and parasitism) on their
distribution, as no native species can substantially regulate their population. Second, data on
species-specific biological interactions for Pomacea in East Asia remain scarce and fragmented.
Most existing studies focus on the ecological impacts of these snails rather than providing
quantifiable interaction data, making it difficult to parameterize biological interaction variables in
the MaxEnt model. Pomacea spp. are more capable of spreading than many native species (Godoy
et al. 2011) and can displace native organisms (Ramasamy et al. 2022). Suitable habitats for
Pomacea spp. are influenced by the water source and composition of the habitat (Ibanez et al. 2014;
Cieplok and Spyra 2020). Pomacea spp. are well-suited for water dispersal due to the dense water
network in southern China and Japan and their tolerance to harsh environments (Byers et al. 2013).
Human activities also affect the spread of invasive organisms (Wan and Yang 2016); however,
obtaining and using these data as a predictive tool is difficult and requires further investigation.

The study by Pearson et al. (2007) demonstrated that under-documentation of the distribution
does not affect the accuracy of the model with model accuracy increasing as the sample size
increases. Hernandez et al. (2006) argued that models that can be generated with a sample size of
only 5-10 samples are not as accurate as those constructed with larger sample sizes but are still
useful (Stockwell and Peterson 2002). Moreover, models are more accurate for species with small
geographic ranges and limited environmental tolerances. However, the sample size for P. maculata
is limited, which may affect the spatial bias, followed by incomplete feature space coverage, which
affects the model generalization ability. Additionally, there is a tendency to use different procedures
to develop species distribution models and compare the results of each model. Therefore, future

studies should consider the effect of sample size on model accuracy and choose carefully.
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CONCLUSIONSs

Our results indicate that P. canaliculata and P. maculata both threaten East Asia's biosecurity.
Under the sustainable development pathway (SSP126), the lowest mean annual temperature
increase and highest global wetland conservation rate collectively reduce invasive dispersal
capacity, thereby appears to limit spread more effectively than other scenarios, whereas fossil fuel-
driven development (SSP585) result in their northward migration. Sustainable development may
protect the environment and biodiversity. However, predictions and early warnings are insufficient
to prevent the spread of invasive organisms. More comprehensive control and quarantine measures

need to be instigated to prevent further spread of apple snails in East Asia.
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