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Trophic interactions between fish and their resources depends on resource availability and
interspecific competition. To understand dry season trophic profiles of a speciose Characiformes
assemblage we performed stomach content analysis to describe diet and determine levels of niche
partitioning and morphological adaptations among eight Characiformes species in the dry season in
Mata de Itamacaoca, Chapadinha Municipality, State of Maranhao, northeastern Brazil. Insectivory
dominated most diets, with Astyanax cf. bimaculatus and Characidium cf. bimaculatum exhibiting
the broadest niches. Specialization occurred in Curimatopsis cf. cryptica (85.07% plant material)
and there was significant dietary segregation with indicator species analysis linking Astyanax cf.
bimaculatus to piscivory and Knodus guajajara to vermivory. Pianka index showed extreme niche
overlap variations, with the highest overlap between Bario oligolepis and Characidium cf.
bimaculatum (1.68), and between Astyanax cf. bimaculatus and Nannostomus beckfordi (1.64).
Morphological PCA associated traits with feeding strategies: caudal fin length (Astyanax cf.
bimaculatus), body depth (Curimatopsis cf. cryptica), and oral gape width (Bario oligolepis).
Mixed models confirmed insects and plant material with a marginally significant effect as key
drivers of dietary variation. Therefore, the assemblage shows high niche overlap combined with
diverse trophic profiles. Results presented here demonstrate how dry season resource scarcity

promotes trophic divergence via morphological specialization, with generalists (Astyanax cf.
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bimaculatus) coexisting with specialists through niche partitioning, which is critical for

conservation in this threatened urban-protected area.
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BACKGROUND

Neotropical aquatic ecosystems harbor one of the most diverse ichthyofaunas on the planet
(Albert et al. 2020; Tonella et al. 2022), where Characiformes play a fundamental role in structuring
trophic networks (Barreto and Aranha 2006; Silva-Camacho et al. 2014; Meira et al. 2022; Oliveira
et al. 2024). In seasonal environments, hydrological variation acts as an environmental filter,
shaping patterns of trophic and morphological adaptations (Junk et al. 1989; Correa and Winemiller
2014; Duarte et al. 2022). Previous studies have shown that the dry season imposes critical
constraints on resource availability, leading to increased interspecific competition (Prejs and Prejs
1987), the emergence of distinct morphological strategies (Gomiero et al. 2010), and dietary
specialization (Novakowski et al. 2008). Although trophic segregation has been highlighted as the
primary mechanism structuring fish assemblages (Ross 1986), this dynamic may vary according to
local conditions, including dry season factors (Bouton et al. 1997). However, gaps remain in
understanding the mechanisms that allow the coexistence of multiple sympatric species under such
extreme conditions (Ross 1986; Neves et al. 2018).

Aquatic environments are generally strongly influenced by seasonal periods and flood pulse
dynamics (Junk et al. 1989; Pazin et al. 2006; Espirito-Santo and Zuanon 2017). As flood peaks
reach their maximum and the system transitions into the dry season, periods that are becoming
increasingly pronounced, there is a progressive decline in turbidity, resource availability, flow
velocity, and water level (Alho and Silva 2012). These abiotic changes result in significant
transformations in fish assemblages (Saint-Paul et al. 2000). While some species exhibit expansion
and contraction dynamics aligned with dry season reproduction, others persist throughout the entire
hydrological cycle (Fialho et al. 2008; Arthington and Balcombe 2011; Fitzgerald et al. 2018). Dry
season variation, particularly in tropical regions, plays a crucial role in shaping food resource

availability and structuring trophic networks (Medeiros et al. 2014; Pelage et al. 2022; Londe et al.
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2024). During the dry season, reduced water volume can lead to increased population density and
the concentration of organisms in remnant habitats, intensifying ecological interactions such as
competition and predation (Duarte et al. 2022). This scenario can directly impact niche partitioning,
leading to shifts in dietary composition and potential trophic displacements among sympatric
species (Silva-Camacho et al. 2014; Bloomfield et al. 2022; De Andrade et al. 2024).

In the context of dry season persistence, intraspecific morphological variation becomes a
crucial factor for fish survival in stochastic ecosystems, as species evolve in response to persistent
hydrological regimes (Poff and Ward 1989; Lytle and Poff 2004). Morphological adaptations and
diversity can confer specializations to specific environmental parameters, thereby increasing
survival among cohorts (Langerhans and Reznick 2010). morphological theory predicts that
coexistence in restrictive environments is mediated by three main mechanisms: (a) divergence in
functional traits (Winemiller 1991), (b) behavioral plasticity (Correa and Winemiller 2014), and (c)
temporal resource partitioning (Ross 1986). However, the application of these principles to small
Characiformes assemblages in seasonal microhabitats remains insufficiently tested. Studies in
analogous systems suggest that body and oral apparatus morphology explain up to 80% of the
variation in resource use (Neves et al. 2018; Duarte et al. 2022), but these patterns may differ
significantly in fragmented environments such as the Mata de Itamacaoca.

The order Characiformes is one of the most diverse among Neotropical fishes, comprising
approximately 1,700 described species (Reis et al. 2016) and encompassing a wide range of feeding
habits, from herbivores and detritivores to carnivores and piscivores (Barbosa et al. 2017; Burns and
Sidlauskas 2019). This functional diversity grants these fishes a crucial role in mediating energy
and matter flow in aquatic ecosystems, directly influencing the availability and renewal of trophic
resources (Burns and Sidlauskas 2019; Burns 2021; Burns et al. 2024). Moreover, their abundance
and distribution across different habitats make them ideal models for investigating trophic
interactions and adaptive strategies in dry season environments (Burns and Sidlauskas 2019; Burns
et al. 2024). Trophic ecology among Characiformes species is often associated with morphological
differences, particularly in mouth shape, dentition, and digestive tract structure (Silva-Camacho et
al. 2014; Benone et al. 2020; Burns 2021; Meira et al. 2022). Specialized morphological traits
enable differential exploitation of available resources (Sibbing and Nagelkerke 2000; Bower and
Winemiller 2019), reducing dietary overlap (Mise et al. 2013) and promoting the coexistence of
multiple species within the same environment (Oliveira et al. 2024; Oliveira et al., 2025). In
environments influenced by seasonal hydrological regimes, these adaptations can be essential for
species survival, allowing diversification of feeding strategies as resource availability fluctuates
throughout the hydrological cycle (Porter et al. 2022; Bloomfield et al. 2022; De Andrade et al.
2024).
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The Munim River Basin (16,000 km?), an important hydrographic system of Maranhao
(Koerber et al. 2022), which is located in a transitional zone between the Amazon and Cerrado
biomes (NuGeo 2016), harboring a still understudied ichthyofauna (Abreu et al. 2019; Vieira et al.
2023). Within this context, the Mata de Itamacaoca stands out as a unique ecological enclave
embedded within an urban matrix (Oliveira et al. 2020), sustaining a diverse assemblage of small
Characiformes (Oliveira et al. 2020), characterized by significant morphological and trophic
overlap (Oliveira et al. 2024). The coexistence of functionally similar species in a seasonally
dynamic environment suggests (i) the presence of sophisticated resource partitioning mechanisms
(Burns and Sidlauskas 2019) and (ii) an increased vulnerability to anthropogenic disturbances
(Daufresne and Boet 2007). Although preliminary studies have identified trophic segregation
patterns (Oliveira et al. 2024), possible mechanisms are unexplored as these studies combined both
wet and dry season than accounting for increased resource abundance in the wet season. Thus, dry-
season ecological processes in the Munim River Basin remain poorly understood, particularly
regarding how seasonal reductions in water volume and resource availability shape trophic
interactions among fish species (Junk et al. 1989; Lytle and Poff 2004; Correa and Winemiller
2014).

Given the above, this study aims to investigate the dietary composition and trophic structure
of Characiformes species in the Mata de Itamacaoca during the dry season through stomach content
analysis, correlating it with food resource availability and species’ morphological adaptations.
Specifically, we seek to: (1) describe dietary composition and identify the main food items
consumed based on stomach content analysis, (2) assess patterns of overlap and segregation in
resource use among species, (3) examine the relationship between morphological attributes and
dietary preferences, and (4) discuss the ecological implications of resource partitioning and

interspecific competition.

MATERIALS AND METHODS

Study area and sampling methodology

This study was conducted in the Mata de Itamacaoca (middle Munim River Basin), a
protected urban fragment (460 ha) within the Cerrado biome 03°44'45.2"S 43°19'15.1"W; ~90 m
elevation), located in the Chapadinha municipality, State of Maranhao, northeastern Brazil (Fig. 1,
Table 1). Mata de Itamacaoca encompasses a diverse array of microhabitats, including riparian

forests, gallery forests, and perennial streams that collectively support a rich biodiversity
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representative of the Cerrado biome (Silva et al. 2008; Oliveira et al. 2020). The vegetation consists
primarily of closed-canopy formations with trees exceeding 10 meters in height, particularly around
springs and water bodies, which are essential for maintaining local water supplies (Silva et al.
2008). The area was officially designated as an Area of Relevant Ecological Interest (Decreto N°
05/2018) due to its critical role in watershed protection, microclimate regulation, and the
conservation of regional biodiversity (Silva et al. 2008). Despite its protected status, the reserve
faces increasing anthropogenic pressures, including illegal resource extraction (e.g., timber, fish,
and game), agricultural burning practices, urban encroachment, and inadequate enforcement of
conservation measures (Oliveira et al. 2020). These threats have significantly affected both the
hydrological dynamics of the reservoir system and the conservation status of aquatic biodiversity in
recent years. The area’s high accessibility and complete urban encroachment make it particularly
vulnerable to such disturbances, despite its recognized ecological importance for regional water

supply and climate regulation (Oliveira et al. 2020).
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Fig. 1. Location of the colleting sites (C1-C5) distributed across the Mata de Itamacaoca,
Chapadinha municipality, State of Maranhao, northeastern Brazil.
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Table 1. Description of the collecting sites, including coordinates and habitat characteristics, in Mata de
Itamacaoca, Chapadinha, Maranhao, Brazil
Collecting Site Coordinates Habitat Characteristics

Cl 3°44'45.20"S Stream near a spring, surrounded by gallery and riparian forest,
43°19'15.10"W in Mata de Itamacaoca, Chapadinha, Maranhdo. Sampling
covered ~200 meters of the watercourse.

C2 3°44'58.24"S Stream in the Repouso do Guerreiro area, within Mata de
43°2023.91"W Itamacaoca, Chapadinha, Maranhdo.

C3 3°44'27.1"S Stream near a natural water source, with gallery and riparian
43°19'36.4"W forest, in Mata de Itamacaoca, Chapadinha, Maranhao.

C4 3°44'55.16"S Itamacaoca Dam, located in Chapadinha, Maranhdo.
43°19'57.10"W

C5 3°45'8.20"S Stream downstream of the dam, within Mata de Itamacaoca,

43°20'4.13"W Chapadinha, Maranhdo.

The regional climate exhibits strong seasonality, with a well-defined dry season lasting five
to six months (July to November/December), characterized by significant water deficits (150-300
mm), followed by an equally distinct rainy season from January to May/June, with peak
precipitation occurring between February and March (Passos et al. 2016; IMESC 2021). This
marked seasonal variation may create dynamic environmental conditions that profoundly influence
the aquatic ecosystems within the protected area.

Sampling was conducted during the dry season (from July to December 2019) at five
previously established collecting sites (C1-C5) distributed across the Mata de Itamacaoca within the
middle Munim River Basin (Fig. 1, Table 1). All sampling procedures were authorized under
SISBIO permit N° 64415. Because the study involved only the collection of wild fish specimens for
taxonomic and ecological analyses, it did not require approval from an Institutional Animal Care
and Use Committee (CEUA). These sites included both natural stream sections and one dam-
impacted area (C4), as described in Oliveira et al. (2020) (Fig. 1, Table 1). Fish collections were
performed using standardized techniques with dip nets (80 cm x 54 cm, 2 mm mesh) and trail nets
(240 cm x 100 cm, 2 mm mesh) following the methodology of Souza and Auricchio (2002). All
collection procedures adhered to animal welfare guidelines (Underwood and Anthony 2020), with
specimens euthanized in a solution of ethyl-3-amino-benzoate-methanesulfonate (MS-222; 250
mg/L) until cessation of opercular movement. Following euthanasia, specimens were initially
preserved in 10% formalin and subsequently transferred to 70% ethanol after 10-15 days for long-
term storage. Voucher specimens are housed at the Colecao Ictioldgica do Centro de Ciéncias
Agrarias e Ambientais (CICCAA) of the Universidade Federal do Maranhdo (UFMA); the complete
information spreadsheets are provided in table S1. This sampling design-maintained consistency
with previous studies in the area while specifically targeting the dry season to investigate trophic

and morphological adaptations under seasonal stress conditions.
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Fish Identification

Fish were identified to the lowest possible taxonomic level, based on specific literature for
each taxonomic group. Species names, authorship and year of description, geographical
distribution, taxonomic classification, as well as other additional information were checked in

Fricke et al. (2025a, b).

Stomach content analyses

Only adult individuals were included in all analyses to avoid ontogenetic effects on trophic
composition and morphological traits (Winemiller 1991; Gerking 1994). This was confirmed by
examining standard length (SL) ranges for each species (Table 2), which consistently corresponded
to adult size classes reported in the literature. We analyzed the dietary composition of 173
specimens belonging to eight Characiformes species: Astyanax cf. bimaculatus (n = 26;
Acestrorhamphidae), Characidium cf. bimaculatum (n = 27; Crenuchidae), Curimatopsis cf.
cryptica (n = 23; Curimatidae), Holopristis cf. ocellifera [Hemigrammus sp. 1 sensu Oliveira et al.
(2020)] (n = 30; Acestrorhamphidae ), Hyphessobrycon piorskii Guimaraes, Brito, Feitosa,
Carvalho-Costa & Ottoni 2018 (n = 16; Acestrorhamphidae), Knodus guajajara Aguiar, Brito,
Ottoni & Guimaraes 2022 [Knodus victoriae (Steindachner, 1907) sensu Oliveira et al. (2020)] (n =
10; Stevardiidae), Bario oligolepis (Giinther 1864) (n = 11; Acestrorhamphidae), and Nannostomus
beckfordi Giinther, 1872 (n = 30; Lebiasinidae) (Table S1, Table 2). An ideal sample size of 30
individuals per species was initially established to standardize comparisons. However, some species
did not reach this number due to their low abundance in the sampled environment during the dry
season. Despite this limitation, the available sample sizes were considered adequate for descriptive

dietary and morphological analyses.

Table 2. Standard length (SL) variation of Characiformes fishes sampled in Mata de Itamacaoca during the dry
season of 2019. Values represent: N = sample size per species, size range (min-max), mean + standard deviation
(SD), and median SL in millimeters

Family Species N SL Range (mm) SL 1\/(1551:111)1- SD SL (1r\n/1;cnd)1an
Acestrorhamphidae Astyanax cf. bimaculatus 26 27.5-76.96 53.35+09.1 53.86
Bario oligolepis 11 45.86-68.44 52.65£6.02 51.73
Holopristis cf. ocellifera 30 25.09-34.15 30.76 £2.08 31.17
Hyphessobrycon piorskii 16 21.02-28.5 25.2+2.01 25.26
Crenuchidae Characidium cf. Bimaculatum 27 22.91-27.55 24.99 + 1.07 24.77
Curimatidae Curimatopsis cf. cryptica 23 30.48-40.42 33.57+£294 32.63
Lebiasinidae Nannostomus beckfordi 30 25.83-29.8 27.75+1.04 27.89
Stevardiidae Knodus guajajara 10 23.88-36.48 30.00 +£4.57 30.56
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To achieve this, we removed the stomach and intestine of each individual and placed the
digestive contents in a Sedgwick-Rafter cell, which contains 1 X 1 mm grid divisions, allowing for
visualization and quantification under a stereomicroscope, following the protocol described by
Martin and Wainwright (2013). The frequency of occurrence (FO) of each dietary item was
determined as the proportion of stomachs in which the item was identified relative to the total
number of stomachs analyzed (Hyslop 1980). The volume (V) of each item was estimated using the
volumetric method described by Hellawell and Abel (1971) and Hyslop (1980). Based on these
values, we calculated a modified alimentary index (IA1) for each species, excluding empty
stomachs, as proposed by Kawakami and Vazzoler (1980). The obtained proportions were rounded
to 0.1% and expressed as percentages. Additionally, we calculated the mean and standard deviation
of the proportions of prey items consumed by each species. Dietary items were identified based on
partially digested remains, including exoskeletal fragments, plant material, and organic matter. To
facilitate analysis, all prey items were classified into taxonomic and functional categories based on
size, shape, and movement patterns, including insect larvae, plant material, insects, crustaceans,

zooplankton, worms, fish, and detritus (Table 3).

Table 3. (a) Stomach content analysis of Characiformes fishes from Mata de Itamacaoca (dry season 2019; N =8
specimens), showing dietary composition by: frequency of occurrence (F%), volumetric proportion (V%), and
Index of Alimentary Importance (IAI). Food items are categorized by taxonomic group, with dominant resources
(IAI) indicating key dietary components. (b) Relative contribution of autochthonous and allochthonous food
resources to the diet of Characiformes assemblage in Mata de Itamacaoca during the 2019 dry season, based on
the Index of Alimentary Importance (IAI)

(a)
Food items/Groups Frequency of Occurrence (%) Volume (%) 1Al
Insects
Coleoptera 19.653 10.268 4.036
Diptera 9.2455 4.4009 0.8140
Ephemeroptera 4.0462 1.9588 0.1585
Hemiptera 8.6705 5.1450 0.8922
Isoptera 4.0462 1.4471 0.1171
Tricophtera 3.4682 2.0771 0.1440
Insect remains 35.260 13.388 9.4413
Insect larvae
Coleoptera larvae 7.5144 3.1509 0.4735
Diptera larvae 11.560 6.7482 1.5602
Hemiptera larvae 3.4682 1.6484 0.1143
Tricophtera larvae 0.5780 0.2600 0.0030
Plant material
Flowers 2.8901 1.4261 0.0824
Seeds 18.497 12.898 4.771
Filamentous algae 7.5144 4.6643 0.7010
Plant remains 26.011 12.079 6.2841
Zooplankton
Hydracarina 3.4682 0.5327 0.0369
Cladocera 0.5780 0.0209 0.0002
Detritus
Debris 16.184 7.4193 2.4016
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Sediment 10.404 3.9495 0.8218
Fish

Fish scale 9.2485 2.7751 0.5133

Fish remains 0.5780 0.2516 0.0029
Worms

Nematodeo 1.7341 1.1694 0.0405
Crustaceans

Decapoda 4.6242 2.3195 0.2145

(b)

Origin of food items Main items included IAI (%)

Allochthonous Adult insects (Coleoptera, Diptera, Ephemeroptera, 79.5

Hemiptera, Isoptera, Trichoptera, insect remains),
flowers, seeds, plant remains
Autochthonous Insect larvae (Coleoptera, Diptera, Hemiptera, 20.5
Trichoptera), filamentous algae, zooplankton
(Hydracarina, Cladocera), detritus (debris,
sediment), fish tissues (scales, remains), worms
(Nematodea), crustaceans (Decapoda)

To assess the trophic organization patterns of Characiformes species, we employed a
multivariate approach based on the proportions of dietary items identified in stomach contents. As
input data, we used the mean proportions (expressed as percentages) of the following dietary items
per species: adult insects, insect larvae, plant material, fish, detritus, crustaceans, worms, and
zooplankton.

We performed a non-metric multidimensional scaling (nMDS) ordination using a Bray-
Curtis dissimilarity matrix calculated from the proportions of dietary items. The analysis was
configured with two dimensions and 3,000 iterations, yielding a final stress value of 0.13, indicating
a good representation of the data (Clarke 1993). ANOSIM was used to test the hypothesis that
differences in dietary item proportions among species were greater than intraspecific variations.
Additionally, we conducted an indicator species analysis using the indicspecies: :multipatt function
in R to determine which dietary components significantly contributed to the stomach contents of
each species (o = 0.05) (Dufréne and Legendre 1997; De Caceres et al. 2010). Indicator values were
calculated based on the point-biserial correlation coefficient (r.g) between the proportions of each
dietary item and species occurrence.

To investigate dietary similarity patterns among species, we performed a hierarchical
clustering analysis using the UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
method, based on trophic niche overlap (Pianka 1973). Proportional dietary data were standardized
using Z-score transformation (scale function). Trophic similarity between species pairs was

quantified using the modified Pianka index (Pianka 1973), calculated as:

Yr=1Pix * DjK)

Oij =
\/22:1 Pl * Xh=1 p]zk

10
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Where pir e pjx represent the proportions of dietary item k for species 1 and j, respectively. This
index ranges from 0 (no overlap) to 1 (complete overlap). To convert this similarity measure into a

dissimilarity, measure suitable for clustering analysis, we calculated D =1 - O.

In addition to its use in clustering analysis, the Pianka index was also applied independently to
quantify niche overlap between species pairs. The calculated values were compiled in a matrix to
identify species with the highest and lowest trophic overlap (Pianka 1973).

To complement niche overlap analysis, we estimated niche breadth using the Levins’ index

(Levins 1968), defined as:
1
Yii—q p?

Where: B: Niche breadth index; p;: Proportion of resource i use relative to the total resources used;

B =

n: Total number of resource categories.

The index was standardized (Ba) to a 0—1 scale for cross-species comparisons:
B-1

Ba =
¢ n—1

Where Ba = 0: Specialist (uses only one resource); Ba = 1: Perfect generalist (equally uses all n

resources).

To summarize dietary patterns at the assemblage level, we fitted linear models (LMs) in R
version 4.0.3 (R Core Team 2021) using pooled proportional dietary data from the eight
Characiformes species. Proportional data were transformed using the arcsine square root to improve
variance homogeneity and normality (Zar 2010; Warton and Hui 2011). The models were used
descriptively to evaluate whether the mean proportional contribution of major food categories
differed from zero, rather than to test interspecific differences. Model coefficients were therefore
interpreted as summaries of assemblage-level dietary composition.

To identify significant differences in dietary proportions among Characiformes species, we
performed multiple comparisons using the non-parametric Dunn test (Dunn 1964), with Benjamini-
Hochberg correction to control the false discovery rate (Benjamini and Hochberg 1995). The
analysis was applied to the transformed data (arcsine square root of proportions; Zar 2010) and

considered all paired combinations between species, with a significance level of o = 0.05.

Functional morphology analyses

11
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To assess the morphological diversity related to trophic resource use, we performed
standardized linearly measurements on 20 morphological characters associated with feeding,
locomotion, and habitat use, following the morphological scheme illustrated in Oliveira et al. (2024,
Table S1) (see Table S2, Table 2). All morphological analyses were performed exclusively on adult
individuals, using the same 173 specimens analyzed in the dietary assessments (Table 2). Standard
length (SL) ranges confirmed that all individuals fell within adult size classes (Table 2). For this, we
adapted protocols from Balon et al. (1986), Sibbing and Nagelkerke (2000), and Breda et al. (2005).
Measurements were obtained using a digital caliper (precision of 0.01 mm) and a stereomicroscope,
ensuring data accuracy.

To isolate shape variation independently of body size, we applied the Mosimann
standardization method, calculating the geometric mean of all measurements per individual and
using this value as a divisor for each character. This approach, preferred in recent comparative
analyses, allows for a more robust evaluation of morphological adaptations while maintaining the
original proportions between characters (Jungers et al. 1995). The geometric mean (GM) was
included as an independent variable in subsequent analyses to represent total body size instead of
standard length (SL) (Nawa et al. 2024).

To investigate morphological divergence patterns between species, we conducted a Principal
Component Analysis (PCA) on the correlation matrix of the standardized measurements. This
multivariate analysis allowed us to identify the axes of greatest morphological variation and assess
the overlap in the morphospace between species, revealing patterns of morphological segregation.

All analytical procedures were performed in the R environment (version 4.1.0).

RESULTS

Dietary composition

During the dry season, adult insects (61.8%), plant material (54%), and insect larvae
(44.1%) dominated the diet of most individuals (Table 3a, b). When dietary items were grouped into
autochthonous and allochthonous categories based on their Index of Alimentary Importance (IAI)
(Table 3a, b), allochthonous resources (adult insects and terrestrial plant material) accounted for
approximately 79.5% of the total dietary importance (Table 3a, b), whereas autochthonous items
(insect larvae, algae, zooplankton, detritus, and aquatic invertebrates) contributed the remaining
20.5% (Table 3a, b). Among the species, the highest proportions of adult insect consumption were

observed in Astyanax cf. bimaculatus (42.6%), Characidium cf. bimaculatum (59.9%), Holopristis

12
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cf. ocellifera (52.2%), Nannostomus beckfordi (43.5%), Knodus guajajara (34.1%), and
Hyphessobrycon piorskii (49.9%) (Fig. 2, Table 3a, b). In contrast, Curimatopsis cf. cryptica
(85.1%) and Bario oligolepis (39.2%) primarily consumed plant material (Fig. 2, Table 3a, b).
Some species, such as Astyanax ct. bimaculatus and Characidium cf. bimaculatum, exhibited
higher dietary diversity, incorporating detritus and other resources in smaller proportions (Fig. 2,
Table 3a, b).

Although some dietary components were rare, such as fish consumption, which was
recorded only in Astyanax cf. bimaculatus (6.86%), other items like crustaceans were observed in
Astyanax cf. bimaculatus (2.81%) and Characidium cf. bimaculatum (9.02%) (Fig. 2, Table 3a, b).
Zooplankton consumption was recorded in Characidium cf. bimaculatum (2.97%), Hyphessobrycon
piorskii (2.15%), Knodus guajajara (1.05%), and Nannostomus beckfordi (1.95%) (Fig. 2, Table 3a,
b). Additionally, worms were recorded exclusively in Hyphessobrycon piorskii (3.35%) and Knodus
guajajara (8.21%) (Fig. 2, Table 3a, b).
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Fig. 2. Proportion of food items in the diet of the analyzed species. The graphs show the percentage
composition (%) of each food category identified in stomach/intestinal contents.

Clustering, Similarity, and Indicator Species

The NMDS ordination analysis (stress = 0.13, k = 2) revealed a weak clustering of species
based on their dietary components, with considerable overlap among them (Fig. 3). However, a
statistically significant difference in diet among species was identified (ANOSIM: R = 0.26, p =
0.001).
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Fig. 3. Non-metric Multidimensional Scaling (NMDS) ordination of dietary overlap among of the
eight Characiformes species based on stomach content composition (Bray-Curtis dissimilarity).
Convex hulls enclose each species' dietary niche space, with closer positions indicating greater
similarity in prey composition. Stress value = 0.13, indicating acceptable representation of
multidimensional dietary patterns in 2D space.

The results of the indicator species analysis showed significant associations between species
and their dietary categories (Table 4). Astyanax cf. bimaculatus was associated with fish
consumption (p < 0.001), while Knodus guajajara was associated with worms (p = 0.0104) (Table
4). Species combinations showed specific preferences - crustaceans (4Astyanax ct. bimaculatus +
Characidium cf. bimaculatum, p = 0.011), insects (4styanax cf. bimaculatus + Bario oligolepis, p =
0.0009), and plant material (4styanax cf. bimaculatus + Curimatopsis cf. cryptica + Bario
oligolepis, p = 0.0001) (Table 4). Larger groups favored insect larvae (p = 0.007) and detritus (p =
0.0094) (Table 4).

Table 4. Results of the indicator species analysis (indicspecies) testing for significant dietary preferences among
fish species based on stomach content composition. Bold values indicate the most strongly associated prey items
for each predator species

Associated Species Group Prey Indicator p
Category Value (stat)

Astyanax cf. bimaculatus Fish 0.556 0.0001***

Knodus guajajara Worms 0.385 0.0001 **=*

Astyanax cf. bimaculatus + Characidium cf. bimaculatum Crustaceans 0.364 0.0104*

Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Bario oligolepis Plant 0.532 0.0001***
material

Astyanax cf. bimaculatus + Bario oligolepis Insects 0.426 0.0009**

Astyanax cf. bimaculatus + Hyphessobrycon piorskii + Knodus guajajara + Nannostomus Insects 0.361 0.007**

beckfordi larvae

Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Knodus guajajara + Bario oligolepis + Detritus 0.354 0.0094**

Nannostomus beckfordi

Trophic structure and variation in trophic resource use
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The Levins’ index ranged from Ba = 0.132 for Curimatopsis cf. cryptica to Ba = 0.593 for
Knodus guajajara, with Hyphessobrycon piorskii (Ba = 0.577) and Astyanax cf. bimaculatus (Ba =
0.562) exhibiting the highest values (Table 5). The species utilized between two (Curimatopsis cf.
cryptica) and six food resources, with Characidium ct. bimaculatum and Nannostomus beckfordi
displaying intermediate values (Ba = 0.478) (Table 5). Bario oligolepis (Ba = 0.268) and
Holopristis cf. ocellifera (Ba = 0.372) completed the observed range of variation (Table 5).

Table 5. Levin’s niche breadth measures: prey proportions (rows 1-8), resource count (N), raw (B) and
standardized (Ba) indices

Dietary Astyanax cf. Characidium cf.  Curimatopsis Holopristis cf. Hyphessobrycon Knodus Bario Nannostomus
component bimaculatus bimaculatum cf. cryptica ocellifera piorskii guajajara oligolepis beckfordi
Insects

larvae 0.156 0.2061 0 0.1877 0.272 0.1841 0 0.232
Plant

material 0.197 0 0.5971 0.2815 0.1786 0.1439 0.3242 0.1787
Insects 0.3149 0.2482 0 0.371 0.2206 0.2274 0.4226 0.2862
Fish 0.0727 0 0 0 0 0 0 0
Detritus 0.1025 0.1248 0.4029 0.1598 0.1294 0.1319 0.2532 0.242
Crustaceans 0.1568 0.315 0 0 0 0 0 0
Worms 0 0 0 0 0.1605 0.26 0 0
Zooplankton 0 0.1058 0 0 0.0388 0.0528 0 0.0611
N 6 5 2 4 6 6 3 5

B 4933 4.346 1.927 3.601 5.036 5.153 2.875 4.349
Ba 0.562 0.478 0.132 0.372 0.577 0.593 0.268 0.478

Dietary niche overlap varied substantially among species (Pianka index: 0.20—1.68) (Table
6). The lowest overlap occurred between Hyphessobrycon piorskii and Knodus guajajara (0.20),
followed by Curimatopsis cf. cryptica and Holopristis cf. ocellifera (0.72) (Table 6). Conversely,
several species pairs showed high overlap (>1.4), particularly Bario oligolepis with Characidium cf.
bimaculatum (1.68) and Astyanax cf. bimaculatus with Nannostomus beckfordi (1.67) (Table 6).
Curimatopsis cf. cryptica exhibited low to moderate overlap with most species (0.71-1.42) (Table

6).

Table 6. Pianka’s measure of niche overlap (Pianka 1973) among Characiformes species from Mata de Itamacaoca.
Values range from 0-1, with 0 being no niche overlap and 1 being complete niche overlap

Species Astyanax cf. Characidium cf.  Curimatopsis Holopristis Hyphessobrycon Knodus Bario Nannostomus
bimaculatus bimaculatum cf. cryptica cf. ocellifera piorskii guajajara  oligolepis beckfordi

Characidium cf. bimaculatum 1.1311 1.0000

Curimatopsis cf. cryptica 1.4241 1.3096 1.0000

Holopristis cf. ocellifera 1.0375 1.4281 0.7242 1.0000

Hyphessobrycon piorskii 1.2865 0.9031 1.4173 1.0622 1.0000

Knodus guajajara 1.4006 0.8876 1.3554 1.4127 0.1959 1.0000

Bario oligolepis 0.9190 1.6867 0.7074 0.8392 1.6209 1.411 1.0000

Nannostomus beckfordi 1.6715 0.5843 0.7844 0.9553 0.8329 0.9763 1.3218 1.0000
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Pairwise comparisons of species’ diets revealed significant differences (p < 0.05, Benjamini-
Hochberg adjusted) in feeding composition among most analyzed pairs. Astyanax ct. bimaculatus
showed significantly distinct dietary patterns compared to all other species except Knodus
guajajara (p = 0.483) (Table 7). Conversely, K. guajajara exhibited pronounced dietary
differentiation from most sympatric species, including Characidium cf. bimaculatum (p < 0.001),
Curimatopsis cf. cryptica (p < 0.001), Holopristis cf. ocellifera (p = 0.0003), Hyphessobrycon
piorskii (p = 0.001), Bario oligolepis (p = 0.020), and Nannostomus beckfordi (p = 0.003) (Table 7).
The cluster analysis based on the eight prey categories formed three distinct groups: (1)
Hyphessobrycon piorskii, Knodus guajajara, Characidium cf. bimaculatum, and Nannostomus
beckfordi; (2) Astyanax cf. bimaculatus; and (3) Holopristis cf. ocellifera, Curimatopsis cf. cryptica

and Bario oligolepis (Fig. 4).

Table 7. Mean comparisons between groups adjusted using the Benjamini-Hochberg method. The table
displays pairwise mean differences and adjusted p-values among species groups. ns (not significant).
Significant results (p < 0.05) indicate substantial differences between species pairs

Group 1 Group 2 Mean Difference  Adjusted p-value Significance
Astyanax cf. bimaculatus Characidium cf. bimaculatum -6.097 0.001 ok
Curimatopsis cf. cryptica -5.337 0.001 oo
Holopristis cf. ocellifera -4.829 0.001 oo
Hyphessobrycon piorskii -4.007 0.0001 HAK
Knodus guajajara -0.043 0.483 ns
Bario oligolepis -2.776 0.007 ok
Nannostomus beckfordi -3.866 0.0002 HAE
Characidium cf. bimaculatum Curimatopsis cf. cryptica 0.238 0.437 ns
Holopristis cf. ocellifera 1.689 0.080 ns
Hyphessobrycon piorskii 0.979 0.241 ns
Knodus guajajara 5.097 0.001 ok
Bario oligolepis 1.969 0.049 *
Nannostomus beckfordi 2.154 0.034 *
Curimatopsis cf. cryptica Holopristis cf. ocellifera 1.319 0.146 ns
Hyphessobrycon piorskii 0.723 0.299 ns
Knodus guajajara 4.562 0.001 oo
Bario oligolepis 1.674 0.078 ns
Nannostomus beckfordi 1.774 0.071 ns
Holopristis cf. ocellifera Hyphessobrycon piorskii -0.411 0.381 ns
Knodus guajajara 3.862 0.0002 oo
Bario oligolepis 0.669 0.307 ns
Nannostomus beckfordi 0.590 0.324 ns
Hyphessobrycon piorskii Knodus guajajara 3.495 0.0007 HAK
Bario oligolepis 0.912 0.253 ns
Nannostomus beckfordi 0.866 0.258 ns
Knodus guajajara Bario oligolepis -2.424 0.018 *
Nannostomus beckfordi -3.154 0.002 oo
Bario oligolepis Nannostomus beckfordi -0.189 0.441 ns
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Fig. 4. Dendrogram from cluster analysis on Index of Trophic similarity between species pairs
quantified using the modified Pianka index (Pianka 1973) for the eight examined Characiformes
fish species in Mata de Itamacaoca, dry season.

The linear model indicated that the overall mean dietary proportion differed from zero (f =
0.605; p =0.001; Table 8). Among food categories, insects showed a significant positive coefficient
(#=0.368; p=0.011; Table 8). Whereas plant material exhibited a marginally significant
contribution (f = 0.285; p = 0.051; Table 8). Other food categories, including detritus, fish, insect

larvae, worms, and zooplankton, did not differ significantly from zero (p > 0.05; Table 8).

Table 8. Table 8. Results of linear models (LMs) summarizing assemblage-level dietary composition of
Characiformes during the dry season. The table presents estimated coefficients, standard errors, t-values,
and significance levels for major food categories. Model coefficients indicate whether the mean
proportional contribution of each food category differs from zero. Proportional data were variance-
stabilized using an arcsine square root transformation. ms = marginally significant. Statistically significant
predictors (p < 0.05) are shown in bold

Coefficients Estimate Std. Error T value p
Intercept 0.605 0.138 4.358 0.001 ***
Detritus 0.155 0.151 1.028 0.305
Fish -0.194 0.186 -1.043 0.298
Insect 0.368 0.144 2.545 0.011*
Insect larvae 0.147 0.152 0.963 0.335
Plant material 0.285 0.146 1.955 0.051 ms
Worms 0.087 0.266 0.328 0.743
Zooplankton -0.116 0.212 -0.550 0.582

Morphological Variation
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The Principal Component Analysis (PCA) explained 41.6% of the total variance, with the
first two principal components (PC1 = 25.4%; PC2 = 16.2%) accounting for most of this variance
(Fig. 5). Species distribution in the morphological space revealed distinct groupings. Astyanax cf.
bimaculatus was primarily influenced by Caudal fin length (CFiL), while Characidium cf.
bimaculatum was determined by Caudal peduncle depth (CPD) (Fig. 5). For Curimatopsis cf.
cryptica, the most important variable was Body depth (BD), whereas Holopristis s cf. ocellifera was
more influenced by Body width (BW) (Fig. 5). Hyphessobrycon piorskii had Head depth (HD) as
the predominant variable, while Knodus guajajara was influenced by Eye diameter (ED) (Fig. 5). In
Bario oligolepis, Dorsal fin length (DFiL) had the greatest impact, while Nannostomus beckfordi
was influenced by Pectoral fin length (PFiL). Bario oligolepis was influenced by Oral gape width
(GW) (Fig. 5).
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Fig. 5. Biplot of Principal Component Analysis (PCA) of morphological trait space between
Characiformes species; and variable loadings on the PC axes.

DISCUSSION

Here, we present the results of the trophic ecology and morphological analyses of
Characiformes species inhabiting the Mata de [tamacaoca, a protected area within the middle
Munim River Basin, Maranhao, Brazil. The study was conducted during the dry season and focused

on the stomach contents and morphological traits of eight fish species from four different families:
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Acestrorhamphidae (4styanax ct. bimaculatus, Bario oligolepis, Holopristis cf. ocellifera, and
Hyphessobrycon piorskii), Stevardiidae (Knodus guajajara), Lebiasinidae (Nannostomus
beckfordi), Crenuchidae (Characidium cf. bimaculatum), and Curimatidae (Curimatopsis cf.
cryptica). Despite the protected status of the area, the presence of urban influences, such as such as
illegal resource extraction, agricultural burning practices, urban encroachment, and inadequate
enforcement of conservation measures, highlights the importance of understanding the ecological
dynamics of these fish communities (Oliveira et al. 2020 2024). The analyses revealed significant
dietary and morphological adaptations, revealing into the mechanisms that allow these species to
coexist in a spatially limited and environmentally sensitive habitat during the dry season. Although
seasonal hydrological fluctuations broadly influence neotropical aquatic ecosystems, our findings
highlight the specific ecological dynamics occurring during the dry season, a critical period of
resource scarcity and intensified biotic interactions (Pelage et al. 2022; Londe et al. 2024). While
some species presented relatively low sample sizes (e.g., Knodus guajajara, Bario oligolepis), these
numbers are consistent with their observed rarity in the field during the dry season. We interpret
these values as biologically meaningful, as they reflect true patterns of local abundance rather than
sampling bias.

At the assemblage level, dietary patterns during the dry season were characterized by the
predominance of insects and, marginally, plant material, as indicated by the linear model analysis
(Table 8). This descriptive overview provides a community-scale context for the morphological
patterns discussed below. Although the first two PCA axes accounted for a moderate proportion of
total variance (41.6%), such values are common in multivariate ecomorphological datasets that
include numerous correlated morphometric traits (Gatz 1979; Winemiller 1991; Jolliffe 2011;
Zelditch et al. 2012; Oliveira et al. 2024). Despite this, the PCA revealed clear species-level
segregation in morphospace, indicating consistent morphological divergence related to trophic
structure. Morphological adaptations among species reflects their feeding preferences: Astyanax cf.
bimaculatus, with a long caudal fin, captures mobile prey (Balon et al. 1986; Breda et al. 2005);
Characidium cf. bimaculatum, with a deep caudal peduncle, enhances burst impulse for insectivory
(Sibbing and Nagelkerke 2000); Curimatopsis cf. cryptica, with a deep body, improves
maneuverability (Balon et al. 1986); Holopristis cf. ocellifera, with a wide body, adapts to vertical
movements (Balon et al. 1986); Hyphessobrycon piorskii, with a high head, has a varied diet;
Knodus guajajara, with large eyes, aids in benthic prey detection (Balon et al. 1986); Bario
oligolepis, with a long dorsal fin, processes vegetation efficiently (Balon et al. 1986; Breda et al.
2005); and Nannostomus beckfordi, with extended pectoral fins, controls propulsion (Balon et al.
1986; Breda et al. 2005). Insectivory in Astyanax cf. bimaculatus, Characidium cf. bimaculatum,

and Hyphessobrycon piorskii aligns with Neotropical floodplain patterns (Petry et al. 2011; Esteves
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et al. 2021), while phytophagy in Curimatopsis cf. cryptica (85.07%) and Bario oligolepis (39.24%)
reflects trophic plasticity (Goulding 1980; Vanni et al. 2006; Medeiros et al. 2014; Allan et al.
2021). Trophic segregation between euryphagous (e.g., Astyanax cf. bimaculatus) and stenophagous
species (e.g., Knodus guajajara) supports the "limiting similarity" paradigm (Abrams 1983; Duarte
et al. 2022), promoting niche partitioning and reducing competition in seasonal ecosystems
(Abrams 1983; Pelage et al. 2022; Londe et al. 2024; Pastore et al. 2021; Zhang et al. 2024).

The consistency between our results and those of Oliveira et al. (2024), conducted in the
same area but without accounting for dry season, underscores the significance of insects and plant
material as key resources for Characiformes species in the Mata de Itamacaoca during the dry
season. Astyanax cf. bimaculatus diet was characterized by fish and crustaceans in our study,
whereas data from Oliveira et al. (2024) emphasized seed intake thus reflecting dry season
abundance of resources. Similarly, Hyphessobrycon piorskii displayed the presence of worms in our
analysis, a dietary component not previously recorded. These discrepancies may reflect dry season
fluctuations in resource availability or dietary plasticity, a phenomenon frequently observed in fish
inhabiting seasonally dynamic environments, particularly during the dry season (Keller et al. 2019).
Nevertheless, the consistent consumption of insects by Characidium cf. bimaculatum and plant
material by Holopristis cf. ocellifera suggests that these resources play a fundamental role in the
trophic ecology of Characiformes species in the Mata de Itamacaoca regardless of environmental
variability.

Although species-specific trophic ecology studies were not available for most of the taxa
analyzed, we compared our findings with the general trophic patterns reported for their respective
genera. Our results generally align with these broader patterns, although notable species-specific
differences emerged. For instance, while literature suggests that species of the genera Knodus
Eigenmann 1911 and Hyphessobrycon Durbin 1908 are typically generalist insectivores (Ceneviva-
Bastos and Casatti 2007; Prado et al. 2016; Benone et al. 2020), we recorded high insectivory in
Knodus guajajara (34.1% adult insects) and Hyphessobrycon piorskii (49.9%), but also observed
niche diversification, such as Hyphessobrycon piorskii consumption of worms (3.4%), a resource
rarely mentioned in prior studies. Similarly, Holopristis cf. ocellifera (52.2% insects) and Bario
oligolepis (39.2% plant material) matched the insectivorous tendency described for their genera
(Castro 1999; Graciolli et al. 2003), although Bario oligolepis reliance on plant matter was
unexpectedly high. Astyanax cf. bimaculatus and Characidium cf. bimaculatum exhibited the
generalist omnivory documented in earlier work (Casatti et al., 2001; Silva-Camacho et al., 2014),
including detritus and crustaceans, but in our data, A. cf. bimaculatus also consumed fish remains
(6.9%), a trophic behavior less frequently reported for the genus. Both species showed elevated

insectivory (42.6% and 59.9%, respectively), surpassing values commonly described in the
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literature. Nannostomus beckfordi, consistent with the varied diet described for its genus (Silva
1993), also showed high insectivory (43.5%), while incorporating zooplankton and detritus. The
most striking divergence was observed in Curimatopsis cf. cryptica, which predominantly
consumed plant material (85.1%) rather than the fine organic matter commonly reported for the
genus (Brejao et al. 2013).

These findings corroborate the well-established paradigm that morphological traits are
critical determinants of trophic niche specialization, facilitating the efficient exploitation of specific
resources through adaptive divergence (Gatz 1979; Sibbing and Nagelkerke 2000; Novakowski et
al. 2016). Such morphological relationships are particularly pronounced in freshwater ecosystems,
where selective pressures drive functional trait diversification, thereby promoting dietary
specialization and mitigating niche overlap via resource partitioning (Ferry-Graham et al. 2002;
Montafia and Winemiller 2013; Montana et al. 2020; Paz Cardozo et al. 2021). The observed
congruence between morphology and diet aligns with niche theory (Hutchinson 1957; Chase and
Leibold 2009), which posits that phenotypic divergence reduces interspecific competition by
enabling differential resource acquisition (Breda et al. 2005; Oliveira et al. 2024). However, the
presence of dietary overlap among morphologically distinct species suggests that niche
differentiation may also be mediated by non-morphological mechanisms (Chesson 2000; Leibold
and McPeek 2006). These could include behavioral plasticity (Gomiero et al. 2010; Garcia et al.
2020), temporal or microhabitat segregation (Schoener 1974; Brandao-Gongalves and Sebastien
2013), or differential prey selectivity driven by foraging strategies (Lubich et al. 2024). Such
compensatory mechanisms may stabilize coexistence in high-diversity assemblages, underscoring
the multidimensional nature of niche partitioning (Chesson 2000; Leibold and McPeek 2006).
Future studies should integrate functional morphology with spatiotemporal foraging data to

disentangle the relative contributions of these factors in structuring trophic interactions.

CONCLUSIONS

Finally, the ecological implications of resource partitioning and interspecific competition are
evident in the coexistence strategies adopted by these species. The observed dietary plasticity,
combined with morphological adaptations, suggests that dry season changes in resource availability
drive adaptive feeding behaviors that minimize direct competition. This finding supports the
hypothesis that environmental dry season acts as a selective pressure, shaping trophic interactions
and promoting species coexistence (Bloomfield et al. 2022). However, the proximity of the Mata de

Itamacaoca to urban areas raises concerns about anthropogenic disturbances, such as habitat

21



Zoological Studies 65: 3 (2026)

degradation and water quality deterioration, which could disrupt the delicate balance of resource
availability and trophic dynamics (Daufresne and Boet 2007; Matono et al. 2014; Iacarella et al.
2018; Candolin and Rahman 2023). In this context, our study has important conservation
implications by identifying functionally vulnerable guilds (e.g., species with restricted diets),
establishing baseline data for long-term monitoring, and highlighting critical microhabitats for
conservation. Effective protection of this ecosystem thus requires strategies that consider both
natural dry season ecological processes and cumulative anthropogenic impacts, integrating aquatic

connectivity and the maintenance of habitat heterogeneity.
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